Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 85-92    DOI: 10.11868/j.issn.1001-4381.2015.001530
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响
张玉波1, 郭荣鑫1,2, 夏海廷1,2, 颜峰1,2, 林志伟1,2
1. 昆明理工大学建筑工程学院, 昆明 650500;
2. 昆明理工大学云南省先进材料力学行为与微结构设计高校重点实验室, 昆明 650500
Effect of WCp Content on Fatigue Crack Growth Behavior of Powder Metallurgy Cu/WCp Composites
ZHANG Yu-bo1, GUO Rong-xin1,2, XIA Hai-ting1,2, YAN Feng1,2, LIN Zhi-wei1,2
1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China;
2. University Key Laboratory of Advanced Material Mechanics Behavior and the Micro Structure Design in Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(1365 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过粉末冶金热压烧结法制备高压电触头Cu/WCp颗粒增强复合材料,研究WCp颗粒含量(15%和3%,体积分数,下同)对Cu/WCp复合材料的疲劳裂纹扩展行为的影响,并结合SEM进行断口分析;利用原位SEM疲劳裂纹观测系统原位观察微裂纹萌生,分析颗粒对裂纹扩展路径的影响机制。结果表明:在相同应力强度因子幅(ΔK)下WCp含量为15%的Cu/WCp的疲劳裂纹扩展速率大于WCp含量为3%的复合材料;颗粒含量的增加并没有提高复合材料的裂纹扩展门槛值ΔKth,这主要是因为颗粒和基体的界面属于弱界面;在疲劳过程中颗粒脱粘形成裂纹源,不同脱粘微裂纹连接长大形成主裂纹是Cu/WCp颗粒增强复合材料的疲劳损伤形式;当主裂纹尖端和颗粒WCp相互作用时裂纹基本沿着颗粒界面往前扩展;复合材料的断裂模式从WCp低含量3%时的颗粒脱粘-裂纹在基体里穿晶断裂,过渡为WCp高含量15%时颗粒脱粘-基体被撕裂为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉波
郭荣鑫
夏海廷
颜峰
林志伟
关键词 Cu/WCp复合材料体积分数疲劳裂纹扩展原位SEM界面脱粘断裂机制    
Abstract:The high voltage electric contact Cu/WCp particles reinforced composite material was prepared by powder metallurgy hot pressing sintering method.The effect of WCp particle contents (15% and 3%,volume fraction,the same as below) on the fatigue crack growth behavior of Cu/WCp composite was studied and the fracture surface was analyzed by SEM.The observation of the fatigue crack initiation and the influence mechanism of particle on fatigue crack growth was carried out by in-situ scanning electron microscopy (SEM).Results show that the fatigue crack growth rate of Cu/WCp/15p composites is faster than that of Cu/WCp/3p composites at the same stress intensity factor range (ΔK);with the increase of WCp content,the threshold stress intensity factor range ΔKth is not enhanced because the interface of the particles and the matrix are weak.From the results of in-situ SEM observation fatigue crack growth can be seen that the crack source is formed due to the particle debonding during fatigue process,different debonding microcracks connect and grow to form main cracks is the fatigue damage mode of Cu/WCp particle reinforced composites.When the main crack tips encounter WCp particles,cracks propagate forward along the particle interface.The fractographies show that the fracture mode of the composites is from particle debonding-transgranular fracture in matrix at the low content 3% to particle debonding-tear in matrix at the high content 15%.
Key wordsCu/WCp composite    volume fraction    fatigue crack growth    in-situ SEM    interfacial debonding    fracture mechanism
收稿日期: 2015-12-19      出版日期: 2017-01-19
中图分类号:  TG113  
通讯作者: 郭荣鑫(1964-),男,教授,博士生导师,博士,主要研究方向为损伤与断裂力学、实验固体力学、复合材料力学,联系地址:昆明市呈贡大学城景明南路727号昆明理工大学建筑工程学院(650500),E-mail:guorx@kmust.edu.cn     E-mail: guorx@kmust.edu.cn
引用本文:   
张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
ZHANG Yu-bo, GUO Rong-xin, XIA Hai-ting, YAN Feng, LIN Zhi-wei. Effect of WCp Content on Fatigue Crack Growth Behavior of Powder Metallurgy Cu/WCp Composites. Journal of Materials Engineering, 2017, 45(1): 85-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001530      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/85
[1] 冯志扬, 李祖来, 山泉,等. 颗粒粒度对碳化钨颗粒增强铁基复合材料界面的影响[J]. 材料工程, 2016, 44(1):83-88. FENG Z Y,LI Z L,SHAN Q, et al. Effect of particles size on interface of tungsten carbide particles reinforced iron matrix composites[J]. Journal of Materials Engineering, 2016, 44(1):83-88.
[2] DESHPANDE P K, LI J H, LIN R Y. Infrared processed Cu composites reinforced with WC particles[J]. Materials Science and Engineering:A, 2006, 429(1-2):58-65.
[3] 王孟君, 张立勇, 刘心宇,等. WC/Cu复合材料制备及其高温性能[J]. 材料科学与工程学报, 2003, 21(4):528-530. WANG M J, ZHANG L Y, LIU X Y, et al. Preparation and high temperature property of WC/Cu composites[J]. Journal of Materials Science and Engineering, 2003,21(4):528-530.
[4] 许天旱, 王荣, 冯耀荣,等. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6):79-84. XU T H,WANG R, FENG Y R, et al. Influence of stress ratio on the fatigue crack growth behavior of K55 casing drilling-steel[J]. Journal of Materials Engineering, 2015, 43(6):79-84.
[5] LLORCA J, RUIZ J, HEALY J C, et al. Fatigue crack growth in salt water, air and high vacuum in a spray-formed particulate-reinforced metal matrix composite[J]. Materials Science and Engineering:A, 1994, 185(1-2):1-15.
[6] MASON J J, RITCHIE R O. Fatigue crack growth resistance in SiC particulate and whisker reinforced P/M 2124 aluminum matrix composites[J]. Materials Science and Engineering:A, 1997, 231(1-2):170-182.
[7] UEMATSU Y, TOKAJI K, KAWAMURA M. Fatigue behaviour of SiC-particulate-reinforced aluminum alloy composites with different particle sizes at elevated temperatures[J]. Composites Science and Technology, 2008, 68(13):2785-2791.
[8] 李微, 陈振华, 陈鼎,等. 喷射沉积SiCp/Al-7Si复合材料的疲劳裂纹扩展[J]. 金属学报, 2011, 47(1):102-108. LI W, CHEN Z H, CHEN D, et al. Growth behavior of fatigue crack in spray-formed SiCp/Al-7Si composites[J]. Acta Metallurgica Sinica,2011, 47(1):102-108.
[9] XU F M, ZHU S J, ZHAO J, et al. Fatigue crack growth in SiC particulates reinforced Al matrix graded composite[J]. Materials Science and Engineering:A, 2003, 360(1-2):191-196.
[10] CHEN Z Z, TOKAJI K, MINAGI A. Particle size dependence of fatigue crack growth in SiC particulate-reinforced aluminum alloy composites[J]. Journal of Materials Science, 2001, 36(20):4893-4902.
[11] SUGIMURA Y, SURESH S. Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles[J]. Metallurgical and Materials Transactions A, 1992, 23(8):2231-2242.
[12] WANG F F, MENG X, MA N, et al. The relationship between TiB2 volume fraction and fatigue crack growth behavior in the in situ TiB2/A356 composites[J]. Journal of Materials Science, 2012, 47(7):3361-3366.
[13] KNOWLES D M, KING J E. The influence of ageing on fatigue crack growth in SiC-particulate reinforced 8090[J]. Acta Metallurgical Et Material, 1991, 39(5):793-806.
[14] LLORCA J. Fatigue of particle-and whisker-reinforced metal-matrix composites[J]. Progress in Materials Science,2002, 47(3):283-353.
[15] YANG N, SINCLAIR I. Fatigue crack growth in a particulate TiB2-reinforced powder metallurgy iron-based composite[J]. Metallurgical and Materials Transactions A, 2003, 34(9):2017-2024.
[16] GASEM Z M. Fatigue crack growth behavior in powder-metallurgy 6061 aluminum alloy reinforced with submicron Al2O3 particulates[J]. Composites Part B, 2012, 43(8):3020-3025.
[17] 李昆, 金晓东. SiC颗粒体积分数对SiCp/Al复合材料疲劳裂纹扩展的影响[J]. 复合材料学报, 1992,9(2):83-88. LI K, JIN X D. Effect of SiC particle volume fraction on fatigue crack growth of SiCp/Al composites[J]. Journal of Composite Materials, 1992,9(2):83-88.
[18] 余荣镇, 王守信. 门槛应力强度因子的物理模型[J]. 机械强度, 1985, (1):37-40. YU R Z, WANG S X. Physical model of threshold stress intensity factor[J]. Journal of Mechanical Strength, 1985, (1):37-40.
[19] CHEN Y Q, PAN S P, ZHOU M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and growth behavior of 2524-T3 Al alloy[J]. Materials Science and Engineering:A, 2013, 580:150-158.
[20] CAPPELLI M D, CARLSON R L, KARDOMATEAS G A. The transition between small and long fatigue crack behavior and its relation to microstructure[J].International Journal of Fatigue, 2008, 30(8):1473-1478.
[21] 王媛媛, 陈立佳, 王宝森. 温度对625镍基高温合金焊接接头低周疲劳行为的影响[J]. 金属学报, 2014, 50(12):1485-1490. WANG Y Y, CHEN L J, WANG B S. Influence of temperature on low cycle fatigue behavior of Inconel 625 nickel based superalloy welded joints[J]. Acta Metallurgical Sinica, 2014, 50(12):1485-1490.
[22] 王德宝, 吴玉程, 王文芳,等. SiC颗粒表面修饰对铜基复合材料性能的影响[J]. 中国有色金属学报, 2007, 17(11):1814-1820. WANG D B, WU Y C, WANG W F, et al. Effect of surface modification of SiC particles on the properties of Cu matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(11):1814-1820.
[1] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[2] 袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
[3] 赵景云, Bamber BLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[4] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[5] 唐甜, 张丁非, 孙静, 胡光山, 胥钧耀, 潘复生. Sn对时效态ZM61镁合金高温力学性能的影响[J]. 材料工程, 2016, 44(11): 9-15.
[6] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[7] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[8] 林雪冬, 刘昌明, 黄笑宇. 离心铸造原位生成初生Ti(AlSi)2颗粒增强Al-16Si-6Ti复合材料筒状零件的组织与性能[J]. 材料工程, 2013, 0(7): 11-15,23.
[9] 沙桂英, 韩玉, 刘腾, 李朝华, 王杰. 应力幅对退火态Mg-3Al-2Sc合金疲劳行为的影响[J]. 材料工程, 2012, 0(12): 24-28.
[10] 严益民, 胡正飞, 林富生, 赵双群. 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为[J]. 材料工程, 2012, 0(11): 38-41,96.
[11] 宫玉辉, 刘铭, 张坤, 黄敏, 伊琳娜, 戴圣龙. 不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J]. 材料工程, 2010, 0(9): 71-73.
[12] 于晓东, 王扬卫, 王富耻, 邹优锐, 高举斌. 挤压铸造制备高体积含量SiCp/2024Al复合材料[J]. 材料工程, 2008, 0(11): 59-62.
[13] 杨胜, 易丹青, 杨守杰, 钟利. 腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究[J]. 材料工程, 2007, 0(12): 26-29,34.
[14] 刘卫华, 贾成厂, 史延涛. Fe-Cu-C合金的凝胶注模成形工艺的研究[J]. 材料工程, 2006, 0(4): 33-36.
[15] 许富民, 朱世杰, 赵杰, 王富岗. SiCp/Al梯度复合材料疲劳裂纹扩展和亚临界扩展行为[J]. 材料工程, 2003, 0(10): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn