Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 1-7    DOI: 10.11868/j.issn.1001-4381.2015.05.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响
江陆, 孙新军, 李昭东, 雍岐龙, 王长军
钢铁研究总院 工程用钢研究所, 北京 100081
Effects of Intercritical Tempering Temperature on Formation of Metastable Austenite and Mechanical Properties of Mn-Mo Series Microalloyed Steel
JIANG Lu, SUN Xin-jun, LI Zhao-dong, YONG Qi-long, WANG Chang-jun
Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(6270 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用X射线衍射(XRD)、热膨胀仪、电子背散射衍射(EBSD)研究了两相区回火温度对一种Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响.结果表明:当两相区回火温度低于650℃时,实验钢的亚稳奥氏体具有较好的稳定性,其室温下的体积分数随着两相区回火温度的升高逐渐增大;当两相区回火温度高于650℃时,亚稳奥氏体的稳定性显著降低,在回火冷却过程中,部分奥氏体转变为"新鲜"马氏体,室温亚稳奥氏体体积分数随两相区回火温度升高而逐渐降低.当两相区回火温度为650℃时,钢中亚稳奥氏体具有最佳的体积分数和稳定性配合.力学测试结果表明:当两相区回火温度为650℃时,实验钢的力学性能最佳,其屈服强度为748MPa,抗拉强度为813MPa,伸长率为27.5%,-20℃和-100℃的冲击功分别为217J和117J.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江陆
孙新军
李昭东
雍岐龙
王长军
关键词 Mn-Mo系微合金钢两相区回火亚稳奥氏体力学性能    
Abstract:Effects of intercritical tempering temperature on formation of metastable austenite and mechanical properties of a kind of Mn-Mo series microalloyed steel were investigated by X-ray diffraction (XRD), dilatometer and electron back scattering diffraction (EBSD). The results show that when intercritical tempering temperature is below 650℃,metastable austenite with good stability in test steel can be achieved, whose volume fraction at room temperature rises with the increase of intercritical tempering temperature. When intercritical tempering temperature exceeds 650℃, the stability of metastable austenite declines significantly, some of austenite transform to "fresh" martensite during tempering cooling. As a result, the volume fraction of metastable austenite at room temperature decreases with the increase of intercritical tempering temperature. The best match in the volume fraction and the stability of metastable austenite is obtained when intercritical tempering temperature is at 650℃. Mechanical test results show that when intercritical tempering temperature is at 650℃, mechanical properties of test steel reach the best with yield and tensile strength 748MPa and 813MPa respectively. The elongation is 27.5%, and impact energy is 217J at -20℃ and 117J at -100℃.
Key wordsMn-Mo series microalloyed steel    intercritical tempering    metastable austenite    mechanical property
收稿日期: 2013-07-15     
1:  TG142.1  
基金资助:国家重点基础研究发展计划(973计划)资助项目(2010CB63085)
通讯作者: 孙新军(1971-),男,教授,现从事低合金钢的研究与开发工作,联系地址:北京市海淀区学院南路76号钢铁研究总院南院工程用钢研究所(100081),sunxinjun@nercast.com     E-mail: sunxinjun@nercast.com
引用本文:   
江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
JIANG Lu, SUN Xin-jun, LI Zhao-dong, YONG Qi-long, WANG Chang-jun. Effects of Intercritical Tempering Temperature on Formation of Metastable Austenite and Mechanical Properties of Mn-Mo Series Microalloyed Steel. Journal of Materials Engineering, 2015, 43(5): 1-7.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.05.001      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I5/1
[1] FULTZ B, KIM J I, KIM Y H, et al. The stability of precipitated austenite and the toughness of 9Ni steel[J]. Metallurgical Transactions A, 1985, 16(12):2237-2249.
[2] SYN C K, FULTZ B, MORRIS J W. Mechanical stability of retained austenite in tempered 9Ni steel[J]. Metallurgical Transactions A, 1978, 9(11):1635-1640.
[3] 张弗天, 王景韫, 郭蕴宜.Ni9钢中的回转奥氏体与低温韧性[J].金属学报,1984, 20(6):405-410.ZHANG F T,WANG J Y,GUO Y Y. On the relationship between return austenite and toughness for Ni9 steel at cryogenic temperatures[J].Acta Metallurgica Sinica,1984,20(6):405-410.
[4] 杨跃辉, 蔡庆伍, 武会宾,等.两相区热处理中回转奥氏体的形成规律及其对9Ni钢低温韧性的影响[J].金属学报, 2009, 45(3):270-274.YANG Y H,CAI Q W,WU H B,et al. Formation of reversed austenite and its effect on cryogenic toughness of 9Ni steel during two-phase region heat treatment[J]. Acta Metallurgica Sinica,2009,45(3):270-274.
[5] 雷鸣, 郭蕴宜. 9% Ni 钢中沉淀奥氏体的形成过程及其在深冷下的表现[J].金属学报, 1989, 25(1):13-17.LEI M,GUO Y Y. Formation of precipitated austenite in 9%Ni steel and its function at cryogenic temperature[J]. Acta Metallurgica Sinica,1989,25(1):13-17.
[6] KIM J I, SYN C K, MORRIS J W. Microstructural sources of toughness in QLT-treated 5.5 Ni cryogenic steel[J]. Metallurgical Transactions A, 1983, 14(1):93-103.
[7] KIM J I, KIM H J, MORRIS J W. The role of the constituent phases in determining the low temperature toughness of 5.5 Ni cryogenic steel[J]. Metallurgical Transactions A, 1984, 15(12):2213-2219.
[8] LEE S W, LEE H C. The mechanical stability of austenite and cryogenic toughness of ferritic Fe-Mn-Al alloys[J].Metallurgical Transactions A, 1993, 24(6):1333-1343.
[9] HUANG J, POOLE W J, MILITZER M. Austenite formation during intercritical annealing[J]. Metallurgical and Materials Transactions A, 2004, 35(11):3363-3375.
[10] WU S J, SUN G J, MA Q S, et al. Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel[J]. Journal of Materials Processing Technology, 2012, 213(1):120-128.
[11] MORRIS J W, GUO Z, KRENN C R, et al. The limits of strength and toughness in steel[J]. ISIJ International, 2001, 41(6):599-611.
[12] YANG Y H, CAI Q W, TANG D, et al. Precipitation and stability of reversed austenite in 9Ni steel[J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(5):587-595.
[13] 杨跃辉, 蔡庆伍, 武会宾,等. 两相区热处理工艺对9Ni钢性能的影响[J].材料热处理学报,2009, 30(3):92-95. YANG Y H, CAI Q W, WU H B,et al. Effect of quenching, lamellarizing and tempering process on properties of 9Ni steel[J].Transactions of Materials and Heat Treatment, 2009, 30(3):92-95.
[14] De MOOR E, MATLOCK D K, SPEER J G, et al. Austenite stabilization through manganese enrichment[J]. Scripta Materialia, 2011, 64(2):185-188.
[15] LOTTEY K K. Austenite decomposition of a HSLA-Nb/Ti steel and an Al-TRIP steel during continuous cooling[D]. Vancouver:University of British Columbia, 2004.
[16] 雍岐龙. 钢铁材料中的第二相[M]. 北京:冶金工业出版社, 2006. 33-34. YONG Q L. Secondary Phase in Steel[M]. Beijing:Metallurgical Industry Press, 2006.33-34.
[17] CHIANG J, LAWRENCE B, BOYD J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Materials Science and Engineering:A, 2011, 528(13):4516-4521.
[18] LI L, GAO Y, ZHU N Q, et al. Technology for high performance TRIP steel[J]. Science China Technological Sciences, 2012, 55(7):1823-1826.
[19] 张坤, 唐荻, 武会宾. 逆转变奥氏体对 9Ni 钢低温冲击韧度的影响[J].热加工工艺, 2012, 41(8):177-179. ZHANG K,TANG D,WU H B.Effect of reverse austenite on impact toughness of 9Ni steel at low temperature[J].Hot Working Technology, 2012, 41(8):177-179.
[20] BROPHY G R, MILLER A J. The metallography and heat treatment of 8 to 10 percent nickel steel[J].Transactions of the American Society of Metals,1949,41:1185-1203.
[21] FULTZ B, MORRIS J W. A Mössbauer spectrometry study of the mechanical transformation of precipitated austenite in 6Ni steel[J].Metallurgical and Materials Transactions A, 1985, 16(1):173-177.
[22] MORRIS J W Jr, KIM J I, FULTZ B. Consequences of the Re-transformation of Precipitated Austenite in Ferritic Cryogenic Steels[R].Cambridge:Lawrence Berkeley National Laboratory, 1979.
[1] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[2] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[3] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[4] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[5] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[6] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[7] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[8] 王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
[9] 娄长胜, 芦馨, 金光, 高景龙, 张罡. 强流脉冲电子束表面处理对TiAlN涂层刀具的组织结构及性能的影响[J]. 材料工程, 2014, 0(8): 15-20.
[10] 王定刚, 肖程波, 宋尽霞, 李青, 余乾. 不同稀土元素添加量对K465合金微观组织与力学性能的影响[J]. 材料工程, 2014, 0(8): 46-50.
[11] 王晓博, 俞宏英, 关望, 孙冬柏. X52钢在普光气田服役条件下的CO2腐蚀行为[J]. 材料工程, 2014, 0(8): 72-78.
[12] 张丁非, 耿青梅, 杨绪盛, 余大亮, 潘复生. 新型复合挤压工艺中温度对AZ61组织和性能的影响[J]. 材料工程, 2014, 0(7): 1-4.
[13] 曹东, 张晓云, 陆峰, 刘建华. 先进复合材料T300/5405综合环境实验谱的研究[J]. 材料工程, 2014, 0(7): 73-78.
[14] 陈连生, 赵远, 田亚强, 宋进英, 魏英立, 杨栋. 低碳硅锰系Q&P钢增塑机制及组织性能[J]. 材料工程, 2014, 0(6): 5-10.
[15] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn