Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 13-20    DOI: 10.11868/j.issn.1001-4381.2015.05.003
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
退火制度对钎焊用热轧复合铝板组织与性能的影响
李智凤1, 潘清林1, 严杰1, 彭卓玮1,2, 李波1, 杨新远2
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 长沙众兴新材料科技有限公司, 长沙 410083
Influence of Annealing on Microstructure and Mechanical Properties for Hot-rolled Aluminium Composite Brazing Sheet
LI Zhi-feng1, PAN Qing-lin1, YAN Jie1, PENG Zhuo-wei1,2, LI Bo1, YANG Xin-yuan2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Changsha Zhongxing New Materials Co., Ltd., Changsha 410083, China
全文: PDF(6599 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用金相显微镜、扫描电镜、透射电镜、X射线衍射仪、拉伸试验机、硬度计等研究了4343/3003/4343铝合金轧制复合板在100~500℃退火15min~10h后的微观组织和力学性能.结果表明:芯层合金300℃退火1h后开始再结晶,370℃以上退火1h后已完全再结晶且伴随有弥散相析出,弥散相析出后通过钉扎晶界阻碍再结晶晶粒长大;1h退火时,随退火温度升高,芯层合金晶粒先增大后减小,复合板的拉伸强度与硬度先降低后升高;370℃退火时,随退火时间延长,芯层合金再结晶程度增加,晶粒缓慢长大,复合板的拉伸强度与硬度下降;复合板最佳退火工艺为370℃/1h.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李智凤
潘清林
严杰
彭卓玮
李波
杨新远
关键词 轧制复合3003合金退火再结晶弥散相    
Abstract:The microstructure and mechanical properties of 4343/3003/4343 hot-rolled aluminium composite sheet after annealing at 100-500℃ and 15min-10h were investigated by optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffractometer, tensile testing machine and hardness tester. The results show that recrystallization of the core alloy occurs at 300℃ for 1h, which is accomplished above 370℃ with amounts of dispersoids precipitation. The dispersoids retard the recrystallized grain growth by pinning grain boundary. With increasing of annealing temperature for 1h, the grain size of the core alloy firstly increases and then decreases, and the tensile strength and hardness of the sheet vary conversely. Meanwhile, with annealing time at 370℃, the volume fraction of recrystallization for the core alloy increases and grain size grows gradually, and the tensile strength and hardness of the sheet decrease. The optimum annealing treatment for the sheet is 370℃/1h.
Key wordsroll bonding    3003 alloy    annealing    recrystallization    dispersoid
收稿日期: 2013-07-22      出版日期: 2015-05-20
中图分类号:  TG146.2+1  
通讯作者: 潘清林(1964-),男,博士,教授,博士生导师,主要从事高性能铝合金研究工作,联系地址:湖南省长沙市麓山南路932号中南大学材料科学与工程学院(410083),pql@csu.edu.cn     E-mail: pql@csu.edu.cn
引用本文:   
李智凤, 潘清林, 严杰, 彭卓玮, 李波, 杨新远. 退火制度对钎焊用热轧复合铝板组织与性能的影响[J]. 材料工程, 2015, 43(5): 13-20.
LI Zhi-feng, PAN Qing-lin, YAN Jie, PENG Zhuo-wei, LI Bo, YANG Xin-yuan. Influence of Annealing on Microstructure and Mechanical Properties for Hot-rolled Aluminium Composite Brazing Sheet. Journal of Materials Engineering, 2015, 43(5): 13-20.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.05.003      或      http://jme.biam.ac.cn/CN/Y2015/V43/I5/13
[1] 刘禹, 王祝堂. 汽车热交换铝材概览[J]. 轻合金加工技术, 2011, 39(5):1-16.LIU Y, WANG Z T. Heat radiating aluminum products for automobile usage[J]. Light Alloy Fabrication Technology, 2011, 39(5):1-16.
[2] 王祝堂. 汽车热交换器用铝板带箔[J]. 轻合金加工技术, 2005, 33(11):1-8.WANG Z T. Automobile heat transfer aluminum foil[J]. Light Alloy Fabrication Technology, 2005, 33(11):1-8.
[3] 祖国胤, 李兵, 李鸿, 等. 冷轧复合对铝合金复合箔组织与性能的影响[J]. 东北大学学报:自然科学版, 2008, 29(5):689-692.ZU G Y, LI B, LI H, et al. Effect of cold-rolling cladding on microstructure and properties of composite aluminum alloy foil[J]. Journal of Northeastern University:Natural Science, 2008, 29(5):689-692.
[4] WANG N, JARL E F, LI Y J, et al. Evolution in microstructure and mechanical properties during back-annealing of AlMnFeSi alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8):1878-1883.
[5] 张新明, 张静, 唐建国, 等. 中间退火对4343/3003/7072汽车热交换器用铝合金复合箔抗下垂性能的影响[J]. 中南大学学报:自然科学版, 2012, 43(1):59-65.ZHANG X M, ZHANG J, TANG J G, et al. Influence of intermediate annealing temperature on sagging resistance of 4343/3003/7072 layered aluminum foil for automobile exchanger[J]. Journal of Central South University:Science and Technology, 2012, 43(1):59-65.
[6] EIZADJOU M, MANESH D H,JANGHORBAN K. Investigation of roll bonding between aluminum alloy stripes[J]. Materials & Design, 2008, 585(29):900-913.
[7] 王冠, 李远波, 郭钟宁, 等. 汽车散热器新型铝合金钎焊接头腐蚀行为的分析[J]. 焊接学报, 2011, 32(6):25-28.WANG G, LI Y B, GUO Z N, et al. Research on corrosion of automobile condenser brazed with novel aluminium alloys[J]. Transactions of the China Welding Institution, 2011, 32(6):25-28.
[8] HUMPHREYS F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅰ.The basic model[J]. Acta Materialia, 1997, 45(10):4231-4240.
[9] HUMPHREYS F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅱ.The effect of second-phase particles[J]. Acta Materialia, 1997, 45(12):5031-5039.
[10] LIU J T, BANOVIC S W, FIELDS R J, et al. Effect of intermediate heat treatment on microstructure and texture evolution of continuous cast Al-Mn-Mg alloy sheet[J]. Metallurgical and Materials Transactions A, 2006, 37(6):1887-1898.
[11] ROBSON J D, HENRY D T, DAVIS B. Particle effect on recrystallization in magnesium-manganese alloys:particle-stimulated nucleation[J]. Acta Materialia, 2009, 57(9):2739-2747.
[12] SONG X Y, RETTENMAYR M. Modeling recrystallization in a material containing fine and coarse particles[J]. Computional Materials Science, 2007,40(2):234-245.
[13] HUMPHREYS F J, HATHERLY M. Recrystallization and Related Annealing Phenomena[M]. Oxford:Elsevier Science Ltd, 1995. 393-415.
[14] ROBSON J D, HENRY D T, DAVIS B. Particle effect on recrystallization in magnesium-manganese alloys:particle pinning[J]. Materials Science and Engineering:A, 2011, 528(12):4239-4247.
[15] TROEGER L P,STARKE J E A. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al-Mg-Si-Cu alloy[J]. Materials Science and Engineering:A, 2000, 393(1-2):19-29.
[16] TANGEN S, SJOLSTAD K, FURU T, et al. Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy[J]. Metallurgical and Materials Transactions A, 2010, 41(11):2970-2983.
[17] 张新明, 吴文祥, 刘胜胆, 等. 退火过程中AA3003铝合金的析出与再结晶[J]. 中南大学学报:自然科学版, 2006, 37(1):1-5. ZHANG X M, WU W X, LIU S D, et al. Precipitation and recrystallization of AA3003 aluminium alloy during annealing[J]. Journal of Central South University:Science and Technology, 2006, 37(1):1-5.
[18] ALEXANDER D T L, GREER A L. Solid-state intermetallic phase transformation in 3XXX aluminium alloys[J]. Acta Materialia, 2002, 50(10):2571-2583.
[19] DEHMAS M, WEISBECKER P, GEANDIER G, et al. Experimental study of phase transformation in 3003 aluminium alloys during heating by in situ high energy X-ray synchrotron radiation[J]. Journal of Alloys and Compounds, 2005, 400(1-2):116-124.
[20] DEHMAS M, AEBY-GAUTIER E, ARCHAMBAULT P, et al. Interaction between eutectic intermetallic particles and dispersoids in the 3003 aluminum alloy during homogenization treatments[J]. Metallurgical and Materials Transactions A, 2013, 44(2):1059-1073.
[21] BAY N. Mechanisms producing metallic bond in cold welding[J]. Welding Journal, 1983, 62(5):137-142.
[22] SOMEKAWA H, WATANABE H, MUKAI T, et al. Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy[J]. Scripta Materialia, 2003, 48(9):1249-1254.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[4] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[5] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[6] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[7] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[8] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[9] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[10] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[11] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[12] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 侯琼, 陶宇, 贾建. 第四代粉末高温合金热变形后的“项链”组织[J]. 材料工程, 2019, 47(3): 94-100.
[15] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn