Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 44-49    DOI: 10.11868/j.issn.1001-4381.2015.05.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能
李雪爱1,2, 王春生2, 韩喜江2
1. 哈尔滨电机厂有限责任公司 水力发电设备国家重点实验室, 哈尔滨 150040;
2. 哈尔滨工业大学, 哈尔滨 150001
Electromagnetic Wave Absorbing Property of Composite Fe3O4-graphite Prepared by In-situ Chemical Precipitation
LI Xue-ai1,2, WANG Chun-sheng2, HAN Xi-jiang2
1. State Key Laboratory of Hydropower Equipment, Harbin Electric Machinery Company Limited, Harbin 150040, China;
2. Harbin Institute of Technology, Harbin 150001, China
全文: PDF(3788 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用原位化学沉淀法将Fe3O4与石墨复合,研究了不同复合比例对吸波性能的影响.结果表明:随着Fe3O4负载量的增加,复合材料中Fe3O4的X射线衍射峰增强; Fe3O4主要沉积在石墨表面,随着Fe3O4负载量的增加,对石墨表面的包覆越完整,但也有一些Fe3O4纳米颗粒散落在石墨颗粒之间;复合材料的介电常数随Fe3O4负载量的增大而减小,磁导率变化较小;在Fe3O4与石墨不同质量比复合材料中,质量比为5:1和4:1的复合材料表现出较好的吸波效果,在厚度为1.5mm时,质量比为5:1样品吸收峰值达-31.9dB,大于-10dB的吸收频带宽为5.0GHz.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪爱
王春生
韩喜江
关键词 Fe3O4石墨复合材料原位化学沉淀法吸波性能    
Abstract:The Fe3O4 and graphite composites are prepared by in-situ chemical precipitation. The effect of mass ratio of Fe3O4 to graphite on electromagnetic wave absorbing property of the composites was investigated. The results show that the intensity of Fe3O4 XRD increases with the increase of the adding amount of Fe3O4 in composites. The Fe3O4 nanoparticles mainly deposit on the surface of graphite particles. The Fe3O4 nanoparticles coat the graphite surface completely with the increase of the adding amount of Fe3O4 in composite and some Fe3O4 nanoparticles disperse between graphite particles. The dielectric constant of composites decreases with the increase of Fe3O4 amount in composites. The magnetic permeability is less affected by the amount of Fe3O4 in composite. The Fe3O4-graphite composites with mass ratio of 5:1 and 4:1 show better absorbing property than that of other samples. The sample of 5:1 shows maximum absorption value of -31.9dB and the frequency bandwidth of reflection loss over -10dB about 5.0GHz at the thickness of 1.5mm.
Key wordsFe3O4    graphite    composite    in-situ chemical precipitation    electromagnetic wave absorbing property
收稿日期: 2013-07-05     
1:  TB34  
基金资助:国家自然科学基金(51207033);黑龙江省博士后资助经费(LBH-Z12271);中央高校基本科研业务专项资金(HIT.NSRIF.2013021)
通讯作者: 李雪爱(1981-),女,博士,主要从事纳米材料、金属腐蚀与防护等方面的研究,联系地址:黑龙江省哈尔滨市哈尔滨工业大学一校区逸夫楼611室(150001),xali81@126.com     E-mail: xali81@126.com
引用本文:   
李雪爱, 王春生, 韩喜江. 原位化学沉淀法制备Fe3O4-石墨复合材料的吸波性能[J]. 材料工程, 2015, 43(5): 44-49.
LI Xue-ai, WANG Chun-sheng, HAN Xi-jiang. Electromagnetic Wave Absorbing Property of Composite Fe3O4-graphite Prepared by In-situ Chemical Precipitation. Journal of Materials Engineering, 2015, 43(5): 44-49.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.05.008      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I5/44
[1] QI X, YANG Y, ZHONG W, et al. Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities[J]. Journal of Solid State Chemistry, 2009, 182(10):2691-2697.
[2] 崔升, 沈晓冬, 袁林生, 等. 电磁屏蔽和吸波材料的研究进展[J]. 电子元件与材料, 2005, 24(1):57-61.CUI S, SHEN X D, YUAN L S, et al. Research development of electromagnetic interference shielding and wave-absorbing materials[J]. Electronic Components & Materials, 2005, 24(1):57-61.
[3] KIM S S, KIM S T, AHN J M, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J]. Journal of Magnetism and Magnetic Materials, 2004, 271(1):39-45.
[4] KIMURA S, KATO T, HYODO T, et al. Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method[J]. Journal of Magnetism and Magnetic Materials, 2007, 312(1):181-186.
[5] 王永杰, 许轶, 芦艾, 等. 电磁屏蔽与吸波材料研究进展[J]. 化工新型材料, 2009, 37(11):24-26.WANG Y J, XU Y, LU A, et al. Research progress on electromagnetic-shielding and absorbing materials[J]. New Chemical Materials, 2009, 37(11):24-26.
[6] 钱九红. 纳米多波段隐身材料研究进展[J]. 稀有金属, 2006, 30(4):511-516.QIAN J H. Research progress in nanometer multiple-band stealthy material[J]. Chinese Journal of Rare Metals, 2006, 30(4):511-516.
[7] FAN Z J, LUO G H, ZHANG Z F, et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites[J]. Materials Science and Engineering:B, 2006, 132(1-2):85-89.
[8] 张健,张文彦,奚正平. 隐身吸波材料的研究进展[J]. 稀有金属材料与工程, 2008, 37(增刊4):504-508.ZHANG J, ZHANG W Y, XI Z P. Development of stealth radarwave absorbing materials[J]. Rare Metal Materials and Engineering, 2008, 37(Suppl 4):504-508.
[9] LAKSHMI K, JOHN H, MATHEW K T, et al. Microwave absorption, reflection and EMI shielding of PU-PANI composite[J]. Acta Materialia, 2009, 57(2):371-375.
[10] PENG C H, HWANG C C, WAN J, et al. Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method[J]. Materials Science and Engineering:B, 2005, 117(1):27-36.
[11] AZIM S S, SATHEESH A, RAMU K K, et al. Studies on graphite based conductive paint coatings[J]. Prog Org Coat, 2006, 55(1):1-4.
[12] 贾瑛, 任强富, 李志鹏, 等. 膨胀石墨基纳米镍、铁、钴化学镀制备复合吸波材料[J]. 材料保护, 2009, 42(8):1-4. JIA Y, REN Q F, LI Z P, et al. Microwave absorbance behavior of expanded graphite-based composite electroless plated with metallic and alloy coatings[J]. Journal of Materials Protection, 2009, 42(8):1-4.
[13] FAN Y, YANG H, LI M, et al. Evaluation of the microwave absorption property of flake graphite[J]. Mater Chem Phys, 2009, 115(2-3):696-698.
[14] 吕淑珍, 陈宁, 王海滨,等. 掺铁氧体和石墨水泥基复合材料吸收电磁波性能[J]. 复合材料学报, 2010, 27(5):73-78. LV S Z, CHEN N, WANG H B, et al. Electromagnetic wave absorption properties of ferrite and graphite cement-based composite materials[J]. Acta Materiae Compositae Sinica, 2010, 27(5):73-78.
[15] NI S B, LIN S M, PAN Q, et al. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals[J]. J Phys D:Appl Phys, 2009, 42(5):055004.
[16] ZHAO R, JIA K, WEI J J, et al. Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties[J]. Mater Lett, 2010, 64(3):457-459.
[17] JIA K, ZHAO R, ZHONG J C, et al. Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres[J]. J Magn Magn Mater, 2010, 322(15):2167-2171.
[18] SNOEK J L. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s[J]. Physica, 1948, 14(4):207-217.
[1] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[2] 李敬勇, 刘涛, 郭宇文. 搅拌摩擦加工铝基复合材料的高温摩擦磨损性能[J]. 材料工程, 2015, 43(6): 21-25.
[3] 陈洁, 袁铁江. 柠檬酸根对纳米Fe3O4制备及其性能的影响[J]. 材料工程, 2015, 43(6): 85-89.
[4] 倪楠楠, 温月芳, 贺德龙, 益小苏, 郭妙才, 许亚洪. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101.
[5] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[6] 冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
[7] 董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
[8] 石晓朋, 李曙林, 常飞, 卞栋梁, 尹俊杰. 复合材料加筋壁板低速冲击响应与冲击能量关系[J]. 材料工程, 2015, 43(4): 53-58.
[9] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[10] 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J]. 材料工程, 2015, 43(3): 1-6.
[11] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[12] 张平, 莫尊理, 张春, 韩立娟, 李政. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3): 72-77.
[13] 杨文彬, 张丽, 刘菁伟, 刘欢锐, 唐兵华. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3): 91-97.
[14] 高禹, 王钊, 陆春, 包建文, 宋恩鹏, 董尚利. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43(3): 106-112.
[15] 王兵, 谭毅, 施伟, 李佳艳, 尤启凡. 硅蒸镀法制备低密度C/C复合材料表面SiC涂层[J]. 材料工程, 2015, 43(2): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn