Please wait a minute...
 
2222材料工程  2015, Vol. 43 Issue (5): 50-55    DOI: 10.11868/j.issn.1001-4381.2015.05.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能
卢林刚1,*(), 陈英辉2, 程哲2, 杨守生3, 邵高耸1
1 中国人民武装警察部队学院 科研部, 河北 廊坊 065000
2 中国人民武装警察部队学院 研究生队, 河北 廊坊 065000
3 中国人民武装警察部队学院 消防工程系, 河北 廊坊 065000
Preparation and Flame Retardancy of Intumescent/MH Flame-retardant Epoxy Resins
Lin-gang LU1,*(), Ying-hui CHEN2, Zhe CHENG2, Shou-sheng YANG3, Gao-song SHAO1
1 Department of Science and Technology, Chinese People's Armed Police Force Academy, Langfang 065000, Hebei, China
2 Graduates Forces, Chinese People's Armed Police Force Academy, Langfang 065000, Hebei, China
3 Department of Fire Protection Engineering, Chinese People's Armed Police Force Academy, Langfang 065000, Hebei, China
全文: PDF(1899 KB)   HTML ( 49 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过极限氧指数(LOI)、水平垂直燃烧(UL-94)、锥形量热(cone)等方法,研究了纳米氢氧化镁(MH)添加到六(4-DOPO羟甲基苯甲酸)环三磷腈化合物(FR)、聚磷酸铵(APP)和环氧树脂(EP)后,制备的新型复合阻燃材料(FR/APP/MH/EP)的阻燃及力学性能.结果表明:在固定FR/APP比例为1/1的前提下,添加1%(质量分数)的MH时,复合阻燃材料EP2(10%FR/10%APP/1%MH/EP)的LOI值达到36.4%,其热释放速率(pk-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)、一氧化碳释放率平均值(av-CO)较纯环氧树脂(EP0)分别下降了79.8%,6.73%,47.2%,33.3%,相对于EP1(10%FR/10%APP/EP)分别下降了20.0%,69.6%,83.6%,58.6%,同时EP2的拉伸、弯曲、冲击强度较EP1也分别提高了47.6%,75.2%,196%;SEM分析表明EP2燃烧后能够形成一层均匀、致密、连续的炭层,具有良好的阻燃、抑烟、降毒效果.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢林刚
陈英辉
程哲
杨守生
邵高耸
关键词 膨胀阻燃剂环氧树脂纳米氢氧化镁阻燃性能    
Abstract

The flame retarding and mechanical properties of new flame retardant composites(FR/APP/MH/EP) were studied using limited oxygen index (LOI) measurement,UL-94 and cone test. The new flame retardant composites were prepared by adding nano-magnesium hydroxide(MH) into six-(4-of DOPO hydroxymethyl phenoxy) cyclotriphosphazene (FR),polyphosphate (APP) and epoxy resin(EP). The results show that when fix the FR/APP 1:1, adding 1% mass fraction MH, the limited oxygen index(LOI) value of EP2 (10%FR/10%APP/1%MH/EP) can reach 36.4%, the peak heat release rate (pk-HRR),average effective heat of combustion (av-EHC),average specific extinction area (av-SEA),average CO release rate (av-CO) of EP2 are reduced by 79.8%,6.73%,47.2%,33.3%, respectively, compared with those of pure EP (EP0) and decrease 20.0%,69.6%,83.6%,58.6%, respectively, compared with those of EP1 (10%FR/10%APP/EP),meanwhile, the tensile,bending and impact strengths of EP2 increase 47.6%, 75.2% and 196%, separately, compared with those of EP1.SEM observation reveals that EP2 forms a uniform, compact and continuous charred layers after burning, which has good flame retarding,smoke suppression and the toxic effects.

Key wordsintumescent flame retardant(IFR)    epoxy resin    nano-magnesium hydroxide    flame retardancy
收稿日期: 2013-10-17      出版日期: 2015-05-20
基金资助:河北省自然科学基金资助项目(E2012507008);国家自然科学基金资助项目(21472241)
通讯作者: 卢林刚     E-mail: llg@iccas.ac.cn
作者简介: 卢林刚(1974—),男,教授,主要研究方向:阻燃材料及有机合成,联系地址:河北省廊坊市西昌路220号中国人民武装警察部队学院科研部(065000),llg@iccas.ac.cn
引用本文:   
卢林刚, 陈英辉, 程哲, 杨守生, 邵高耸. 新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能[J]. 材料工程, 2015, 43(5): 50-55.
Lin-gang LU, Ying-hui CHEN, Zhe CHENG, Shou-sheng YANG, Gao-song SHAO. Preparation and Flame Retardancy of Intumescent/MH Flame-retardant Epoxy Resins. Journal of Materials Engineering, 2015, 43(5): 50-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.05.009      或      http://jme.biam.ac.cn/CN/Y2015/V43/I5/50
Fig.1  六(4-DOPO羟甲基苯氧基)环三磷腈(FR)的分子结构式[11]
Sample Mass fraction/% LOI/% UL94HB UL94V
EP m-PDA FR APP MH
EP0 90.9 9.1 0 0 0 25.4 HB-3-16.1 V-2
EP1 72.7 7.3 10 10 0 36.3 HB V-0
EP2 72.7 7.3 10 10 1 36.4 HB V-0
EP3 72.7 7.3 10 10 2 36.0 HB V-0
EP4 72.7 7.3 10 10 3 34.6 HB V-0
EP5 72.7 7.3 10 10 4 32.4 HB V-0
Table 1  纯EP及FR/APP/MH/EP复合材料的氧指数和UL94实验结果
Sample TTI/s pk-HRR/(kW·m-2) av-EHC/(MJ·kg-1) av-SEA/(m2·kg-1) av-CO/(kg·kg-1) Char yield/%
EP0 93 1243.27
(170s)
28.99 1115.06 0.18 7.4
EP1 66 314.37
(200s)
88.99 3583.38 0.29 52.7
EP2 74 251.37
(190s)
27.04 588.39 0.12 58.5
EP3 68 334.97
(155s)
27.70 790.75 0.13 43.2
EP4 70 357.00
(150s)
26.11 1193.19 0.10 51.0
EP5 67 348.74
(105s)
26.65 1170.57 0.10 36.9
Table 2  纯EP及FR/APP/MH/EP复合材料的35kW·m-2辐射功率锥形量热仪(cone)实验数据
Fig.2  纯EP及FR/APP/MH/EP体系的热释放速率曲线
Sample FGI/(kW·m-2·s-1) THRI6min/(MJ·m-2) TSPI6min/(m2·g·kg-1·s-1) ToxPI6min/(g·s-1)
EP0 7.31 2.01 3.55 1.19
EP1 1.57 1.43 3.74 1.06
EP2 1.32 1.64 2.92 0.66
EP3 2.16 1.73 3.16 0.81
EP4 2.38 1.77 3.37 0.73
EP5 3.32 1.83 3.42 0.80
Table 3  纯EP及FR/APP/MH/EP复合材料燃烧性能指数
Sample Tensile strength/MPa Break elongation/% Bending strength/MPa Bending modulus/MPa Impact strength/(kJ·m-2)
EP0 140.10 5.45 286.28 46.09 26.40
EP1 44.33 0.81 91.55 38.40 6.49
EP2 65.45 1.58 160.38 50.15 19.20
EP3 64.79 1.12 102.50 42.87 18.55
EP4 60.08 1.07 140.36 51.99 16.80
EP5 63.72 2.16 132.64 54.82 17.99
Table 4  纯EP和FR/APP/MH/EP力学性能测试结果
Fig.3  阻燃环氧树脂体系燃烧后炭层的数码照片
(a)EP0;(b)EP1;(c)EP2
Fig.4  阻燃环氧树脂体系燃烧后炭层的SEM照片
(a)EP0;(b)EP1;(c)EP2
1 王淑波, 王利生 磷系阻燃环氧树脂研究[J]. 化学进展, 2007, 19 (1): 159- 164.
1 WANG Shu-bo, WANG Li-sheng Phosphorus-containing flame retardant epoxy resins[J]. Progress in Chemistry, 2007, 19 (1): 159- 164.
2 王正洲, 王云, 胡源 聚磷酸铵及季戊四醇膨胀型阻燃环氧树脂的阻燃性能[J]. 高分子材料科学与工程, 2009, 25 (11): 86- 89.
2 WANG Zheng-zhou, WANG Yun, HU Yuan Intumescent flame retardation of epoxy resins containing ammonium polyphosphate and pentaerythritol[J]. Polymer Materials Science and Engineering, 2009, 25 (11): 86- 89.
3 马志领, 卢光玉 膨胀型阻燃剂阻燃环氧树脂的阻燃性能及其影响因素[J]. 中国塑料, 2010, 24 (8): 45- 48.
3 MA Zhi-ling, LU Guang-yu Flame retardancy and influencing factors of epoxy resin flame retarded by intumescent flame retardant[J]. China Plastics, 2010, 24 (8): 45- 48.
4 卢林刚, 徐晓楠, 王大为, 等 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013, 30 (1): 83- 89.
4 LU Lin-gang, XU Xiao-nan, WANG Da-wei, et al Preparation and flame retardancy of intumescent flame-retardant polypropylene[J]. Acta Materiae Compositae Sinica, 2013, 30 (1): 83- 89.
5 XIAO Wei-dong, HE Pei-xin, HU Gao-ping, et al Study on the flame-retardance and thermal stability of the acid anhydride-cured epoxy resin flame-retarded by triphenyl phosphate and hydrated alumina[J]. Journal Fire Sciences, 2001, 19 (5): 369- 377.
6 HUANG F, LIU Y Q, ZHANG X H, et al Effect of elastomeric nanoparticles on toughness and heat resistance of epoxy resins[J]. Macromolecular Rapid Communications, 2002, 23 (13): 786- 790.
7 MAUERER O New reactive, halogen-free flame retardant system for epoxy resins[J]. Polymer Degradation and Stability, 2005, 88 (1): 70- 73.
8 WANG C S, LEE M C Synthesis, characterization, and properties of multifunctional naphthalene-containing epoxy resins cured with cyanate ester[J]. Journal of Applied Polymer Science, 1999, 73 (9): 1611- 1622.
9 TAKAHASHI A, SATSU Y, NAGAI A, et al Heat-resistant epoxy-silicon hybrid materials for printed wiring boards[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28 (2): 163- 167.
10 TAKAMATSU Y, DUNMEYER D, THOMAS EL, et al Preparation characterization and heat resistance studies of a holographic photopolymer based on SU-8 epoxy resin[J]. Optics Letters, 2008, 33 (1): 7- 9.
11 卢林刚, 王晓, 杨守生, 等 单组分磷-氮膨胀阻燃剂的合成及成炭性能[J]. 高分子材料科学与工程, 2012, 28 (7): 10- 13.
11 LU Lin-gang, WANG Xiao, YANG Shou-sheng, et al Synthesis and charring of arborescent monomolecular P-N intumescent flame retardant[J]. Polymer Materials Science and Engineering, 2012, 28 (7): 10- 13.
12 周红军, 李设桥, 李翠金, 等 纳米二氧化钛对环氧树脂固化反应的影响[J]. 热固性树脂, 2012, 27 (6): 11- 14.
12 ZHOU Hong-jun, LI She-qiao, LI Cui-jin, et al Influence of nano-TiO2 on the curing reaction of epoxy resin[J]. Thermosetting Resin, 2012, 27 (6): 11- 14.
13 FRANGIOSA P C, CATALANI L H Production of lifetime controlled plastics: copolymers of styrene and substituted butadienes[J]. Polymer Degradation and Stability, 2003, 82 (2): 207- 210.
14 王德花, 李荣勋, 刘光烨 包覆红磷阻燃ABS的性能研究[J]. 中国塑料, 2007, 21 (11): 74- 77.
14 WANG De-hua, LI Rong-xun, LIU Guang-ye Performance of capsule red phosphorus flame-retarded ABS composites[J]. China Plastics, 2007, 21 (11): 74- 77.
15 张琦, 胡伟康, 田明, 等 纳米氢氧化镁/橡胶复合材料的性能研究[J]. 橡胶工业, 2004, 51 (1): 14- 18.
15 ZHANG Qi, HU Wei-kang, TIAN Ming, et al Properties of nano-magnesium hydroxide/rubber composite[J]. China Rubber Industry, 2004, 51 (1): 14- 18.
16 张建军, 张靖宗, 纪全, 等 MWNTs-OH/PET纳米复合材料的燃烧性能与阻燃机理研究[J]. 功能材料, 2010, 41 (3): 394- 396.
16 ZHANG Jian-jun, ZHANG Jing-zong, JI Quan, et al Combustion property and flame-retardant mechanism of MWNTs-OH/PET composites[J]. Journal of Functional Materials, 2010, 41 (3): 394- 396.
17 李到, 胡静平, 秦艳, 等 磷酸酯双三聚氰胺盐阻燃环氧树脂的燃烧性能和阻燃机理[J]. 功能高分子学报, 2007, 19-20 (1): 81- 86.
17 1): 81-86. LI Dao, HU Jing-ping, QIN Yan, et al Combustion behavior and pyrolysis of epoxy resins blended with caged bicyclic dimelamine phosphate[J]. Journal of Functional Polymers, 2007, 19-20 (1): 81- 86.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 许良, 涂宜鸣, 崔浩, 周松. 海水环境下老化周期对T800碳纤维/环氧树脂复合材料的影响[J]. 材料工程, 2022, 50(12): 89-94.
[3] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[4] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[5] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[6] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[7] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[8] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[9] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[10] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[11] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[12] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[13] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[14] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[15] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn