Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (5): 56-61    DOI: 10.11868/j.issn.1001-4381.2015.05.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能
陈雅斓1, 刘海昌2, 滕元成1
1. 西南科技大学 材料科学与工程学院, 四川 绵阳 621010;
2. 广州红日燃具有限公司, 广州 510435
Hot-press Sintering of Nd-doped Titanate Compounding Minerals Form and Its Leaching Performance
CHEN Ya-lan1, LIU Hai-chang2, TENG Yuan-cheng1
1. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;
2. Guangzhou Redsun Gas Appliances Company Limited, Guangzhou 510435, China
全文: PDF(3363 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以天然锆英石(ZrSiO4),CaCO3,TiO2,Nd2O3,Al2O3,SiO2为原料,采用真空热压烧结技术制备掺钕钙钛锆石和榍石组合矿物固化体,借助X射线衍射(XRD)、扫描电镜(SEM)、背散射(BSE)、电感耦合等离子体质谱(ICP-MS)等分析手段,研究了组合矿物固化体的热压烧结温度、相结构及浸出性能等.结果表明:组合矿物固化体的较佳热压烧结温度为1130~1170℃,固化体的相对密度≥97.2%,主要物相为钙钛锆石(CaZrTi2O7)和榍石(CaTiSiO5)的组合矿物;固化体具有良好的化学稳定性,在90℃,pH值为5,7,9的水溶液中, Nd3+在42天的归一化浸出率分别为1.9×10-6,1.5×10-6,1.2×10-6g·m-2·d-1;pH值对固化体中Ca2+,Zr4+的浸出率没有明显的影响;在弱碱水溶液(pH=9)中,Ti4+,Nd3+的浸出率较低,Si4+,Al3+的浸出率较高.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈雅斓
刘海昌
滕元成
关键词 钙钛锆石榍石热压烧结浸出率    
Abstract:The compounding minerals form of Nd-doped zirconolite(CaZrTi2O7) and sphene(CaTiSiO5) was prepared by vacuum hot-press sintering using natural zirconite(ZrSiO4), calcium carbonate(CaCO3), titanium dioxide(TiO2), neodymium oxide(Nd2O3),aluminum oxide(Al2O3) and silicon dioxide(SiO2)as raw materials. The hot-press sintering temperature, phase composition, and leaching performance of synroc form were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM),backscattering scanning electron microscopy(BSE), inductively coupled plasma mass spectrometry(ICP-MS). The results indicate that the range of optimized hot-press sintering temperature of the compounding minerals form is 1130-1170℃ with the relative density over or equal 97.2%, while the main phase is the compounding minerals of zirconolite and sphene. The normalized leaching rates of Nd3+(42d) are 1.9×10-6g·m-2·d-1 (pH=5),1.5×10-6g·m-2·d-1(pH=7), and 1.2×10-6g·m-2·d-1(pH=9) at 90℃, respectively. Thereby the compounding minerals form has excellent chemical stability. pH values have no obvious effect on the leaching rates of Ca2+ and Zr4+. The normalized leaching rates of Ti4+ and Nd3+ are lower, and those of Si4+ and Al3+ are higher in weak base aqueous solution (pH=9).
Key wordszirconolite    sphene    hot-press sintering    neodymium    leaching rate
收稿日期: 2013-11-25     
1:  TL941  
基金资助:国家自然科学基金资助项目(10775113)
通讯作者: 陈雅斓(1961-),女,学士,副教授,主要从事无机非金属材料方面研究工作,联系地址:四川省绵阳市西南科技大学材料学院(621010),chenyalan@swust.edu.cn     E-mail: chenyalan@swust.edu.cn
引用本文:   
陈雅斓, 刘海昌, 滕元成. 热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能[J]. 材料工程, 2015, 43(5): 56-61.
CHEN Ya-lan, LIU Hai-chang, TENG Yuan-cheng. Hot-press Sintering of Nd-doped Titanate Compounding Minerals Form and Its Leaching Performance. Journal of Materials Engineering, 2015, 43(5): 56-61.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.05.010      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I5/56
[1] RINGWOOD A E,KESSON S E,WARE N G, et al. Immobilization of high level nuclear reactor wastes in Synroc[J]. Nature, 1979,278(5701):219-223.
[2] 朱鑫璋, 罗上庚, 汪德熙. 锕系核素的人造岩石固化[J]. 核科学与工程, 1997, 17(2):173-178.ZHU Xin-zhang, LUO Shang-geng, WANG De-xi. Synroc for actinides immobilization[J]. Chinese Journal of Nuclear Science and Engineering, 1997, 17(2):173-178.
[3] VANCE E R, LUMPKIN G R, CARTER M L, et al. Incorporation of uranium in zirconolite (CaZrTi2O7)[J]. J Am Ceram Soc, 2002, 85(7):1853-1859.
[4] MUTHURAMAN M, PATIL K C. Synthesis, properties, sintering and microstructure of sphene, CaTiSiO5: a comparative study of coprecipi-tation, sol-gel and combustion processes[J]. Mater Res Bull, 1998, 33(4):655-661.
[5] 崔春龙, 卢喜瑞, 张东, 等. 含放射性核素天然榍石的稳定性研究[J]. 矿物岩石, 2008, 28(4):7-12.CUI Chun-long, LU Xi-rui, ZHANG Dong, et al. Stability of natural sphene with radioactive elements[J].Mineralogy Petrology, 2008, 28(4):7-12.
[6] LETURCQ A G, MCGLINN P J, BARBE C, et al. Aqueous alteration of nearly pure Nd-doped zirconolite (Ca0.8Nd0.2ZrTi1.8Al0.2O7), a passivating layer control[J]. Applied Geochemistry, 2005,20(5):899-906.
[7] STRACHAN D M, SCHEELE R D, BUCK E C, et al.Radiation damage effects in candidate titanates for Pu disposition:zirconolite[J]. J Nucl Mater, 2008,372(1):16-31.
[8] ZHANG Y, STEWART M W A, LI H, et al.Zirconolite-rich titanate ceramics for immobilisation of actinides-waste form/HIP can interactions and chemical durability[J]. J Nucl Mater, 2009,395(1-3):69-74.
[9] PÖML P, GEISLER T, COBOS-SABATÉ J, et al.The mechanism of the hydrothermal alteration of cerium-and plutonium-doped zirconolite[J]. J Nucl Mater,2011, 410(1-3):10-23.
[10] ZENG Chong-sheng, TENG Yuan-cheng, LI Yu-xiang, et al. Sphene synroc solidification of neodymium[J]. Journal of the Chinese Ceramic Society, 2009,37(3):470-475.
[11] 滕元成,曾冲盛,任雪潭,等.合成榍石的化学稳定性[J]. 原子能科学技术,2010,44(1):14-19. TENG Yuan-cheng, ZENG Chong-sheng, REN Xue-tan, et al. Chemical durability of synthesized sphene[J].Atomic Energy Science and Technology, 2010,44(1):14-19.
[12] 滕元成,周时光,卢忠远.钙钛锆石和榍石的合成及烧结[J].硅酸盐学报,2006,34(7):810-814. TENG Yuan-cheng, ZHOU Shi-guang, LU Zhong-yuan. Synthesis and sintering of zirconolite and sphene[J]. Journal of the Chinese Ceramic Society,2006, 34(7):810-814.
[13] 滕元成,桂成梅,任雪潭. 钙钛锆石和榍石的组合矿物固溶铀[J]. 硅酸盐学报,2011,39(9):1505-1510. TENG Yuan-cheng, GUI Cheng-mei, REN Xue-tan. Solidifying uranium in assembled minerals of zirconolite and sphene[J]. Journal of the Chinese Ceramic Society, 2011,39(9):1505-1510.
[14] 滕元成,李玉香,徐会杰,等.掺钕钙钛锆石、榍石组合矿物固化体的浸出性能[J].原子能科学技术,2010,44(10):1179-1184. TENG Yuan-cheng, LI Yu-xiang, XU Hui-jie, et al. Leaching performance of compounding minerals of zirconolite and sphene doped neodymium[J].Atomic Energy Science and Technology, 2010,44(10):1179-1184.
[15] TENG Yuan-cheng, WANG Shan-lin, HUANG Yi, et al. Low-temperature reactive hot-pressing of cerium-doped titanate composite ceramics and their aqueous stability[J].Journal of the European Ceramic Society,2014, 34(4):985-990.
[16] 桂成梅,滕元成,任雪潭,等.钙钛锆石基组合矿物固溶铈的研究[J].原子能科学技术,2011,45(11):1294-1299. GUI Cheng-mei, TENG Yuan-cheng, REN Xue-tan, et al. Research of solidifying cerium in the assembled minerals of zirconolite-based[J].Atomic Energy Science and Technology, 2011,45(11):1294-1299.
[1] 徐桂华, 卢振, 张凯锋. 脉冲电流辅助烧结和真空热压烧结对NiAl-Al2O3微观组织和力学性能的影响[J]. 材料工程, 2012, 0(5): 76-80.
[2] 逄锦程, 乔英杰, 耿林, 范国华. 粉末冶金法制备Al-Pb合金微观组织分析[J]. 材料工程, 2009, 0(12): 22-25.
[3] 孙军龙, 刘长霞, 何士龙. B4C/Al2O3/TiC复合陶瓷的力学性能和微观结构[J]. 材料工程, 2008, 0(7): 27-29.
[4] 任帅, 孙康宁, 刘科, 庞来学. 热压烧结制备Ti3Al/TiC+ZrO2陶瓷复合材料[J]. 材料工程, 2007, 0(1): 34-36.
[5] 常华, 骆心怡, 李顺林, 杨文涛. 高能球磨纳米CeO2/Zn复合粉末的热压烧结[J]. 材料工程, 2006, 0(7): 35-38,42.
[6] 孙德明, 鹿晓阳, 李成美, 薛仲舜, 陈怀明, 岳雪涛, 孙胜. Cr3C2及(W,Ti)C对Al2O3/Cr3C2/(W,Ti)C复合陶瓷材料Vickers硬度的影响[J]. 材料工程, 2005, 0(11): 16-18.
[7] 李四清, 雷力明, 刘瑞民. 钕对颗粒增强钛基复合材料组织和性能的影响[J]. 材料工程, 2004, 0(9): 23-26.
[8] 张明福, 余大书, 王彪. 自燃烧法制备BaNd2Ti5O14纳米晶[J]. 材料工程, 2002, 0(1): 6-8.
[9] 林元华, 张中太, 唐子龙, 张枫, 陈清明. 掺杂稀土CaAl2O4基发光材料的制备及其发光机制[J]. 材料工程, 2001, 0(8): 29-31.
[10] 张守民, 欧阳砥, 周永洽. 钕铁硼磁体的有机溶液电镀铝研究[J]. 材料工程, 2000, 0(9): 31-32.
[11] 周新贵, 张长瑞, 何新波, 李银奎, 周安郴, 曹英斌, 马江. 热解碳涂层碳纤维增强碳化硅复合材料热压工艺研究[J]. 材料工程, 2000, 0(3): 39-41.
[12] 刘昌明, 李华基, 何乃军, W. H. Li, K. Xia. 钕对Ti-44Al合金组织和晶粒尺寸的影响[J]. 材料工程, 1998, 0(11): 20-23.
[13] 吴鸿兴, 郭大浩, 夏小平, 王声波, 戴宇生. 钕玻璃脉冲激光材料表面改性处理及其应用[J]. 材料工程, 1993, 0(3): 6-8.
[14] 张丙荣, 尹维英, 潘敏元, 杨熙珍. SiC-WC复合陶瓷材料的研究[J]. 材料工程, 1991, 0(5): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn