Please wait a minute...
材料工程  2015, Vol. 43 Issue (5): 81-88    DOI: 10.11868/j.issn.1001-4381.2015.05.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
冯宇1, 何宇廷1, 安涛1, 崔荣洪1, 邵青1, 范超华2
1. 空军工程大学 航空航天工程学院, 西安 710038;
2. 解放军驻122厂军代室, 哈尔滨 150060
Influence of Hygrothermal Environment on Compressive Buckling and Post-buckling Performance of Aero Composite Stiffened Panel
FENG Yu1, HE Yu-ting1, AN Tao1, CUI Rong-hong1, SHAO Qing1, FAN Chao-hua2
1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
2. Military Representative Office of PLA Residing in Factory 122, Harbin 150060, China
全文: PDF(4063 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 使航空复合材料加筋板在湿热环境中(70℃、水浴)达到吸湿饱和状态,对普通加筋板(A型)和吸湿饱和加筋板(B型)进行压缩实验.两类加筋板的破坏形貌相似,主要是筋条的断裂、脱粘和壁板的分层、撕裂,但破坏位置显著不同,A型加筋板的破坏位置均在加筋板中部附近,而B型分别在靠近两端的部位破坏,表明B型加筋板的破坏位置具有不确定性.两类加筋板的屈曲形式均为筋条间壁板的屈曲和中间2根筋条的屈曲,但两类加筋板相同位置的失稳壁板的弯曲方向相反,说明湿热环境对失稳壁板的弯曲方向影响较大.B型加筋板在压缩载荷下仍存在后屈曲过程,湿热环境对加筋板的屈曲载荷影响较小,对破坏载荷影响较大,较A型加筋板相比两者分别下降了3.1%和22.2%.
E-mail Alert
关键词 复合材料加筋板湿热环境屈曲后屈曲载荷    
Abstract:Aero composite stiffened panel achieved absorbing moisture saturation in hygrothermal environment (70℃ distilled water). The compressive experiments were conducted on the untreated composite stiffened panels(type A) and the saturated ones(type B).Failure modes of the both types stiffened panels are similar with three major ways, including fracture and debonding of stiffeners together with the splitting and ripping of the panels. The fracture locations of type A are around the middle of panels while those of type B are towards either end of the panels, indicating the uncertainty of fracture locations for type B. The buckling patterns for both types are buckling of panels between stiffeners and buckling of the two middle stiffeners. The bending direction of type B is opposite to that of type A in the panel of same position, showing hygrothermal environment imposes much effect on the bending direction of panels. There still exists a post-buckling process for type B under compression, showing hygrothermal environment has less effect on the buckling load and more effect on the failure load of panels, whose buckling load and failure load decrease by 3.1% and 22.2%, respectively, compared with those of type A.
Key wordscomposite stiffened panel    hygrothermal environment    buckling    post-buckling    load
收稿日期: 2014-12-03      出版日期: 2015-05-20
中图分类号:  TB332  
通讯作者: 何宇廷(1966-),男,博士,教授,主要从事飞行器结构强度与寿命方面研究工作,联系地址:陕西省西安市灞桥区霸陵路1号(710038),     E-mail:
冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
FENG Yu, HE Yu-ting, AN Tao, CUI Rong-hong, SHAO Qing, FAN Chao-hua. Influence of Hygrothermal Environment on Compressive Buckling and Post-buckling Performance of Aero Composite Stiffened Panel. Journal of Materials Engineering, 2015, 43(5): 81-88.
链接本文:      或
[1] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.SHEN Guan-lin, HU Geng-kai. Mechanics of Composite Materials[M].Beijing:Tsinghua University Press,2006.
[2] 蔡登安,周光明,王新峰,等.双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程,2014,(5):73-77.CAI Deng-an, ZHOU Guang-ming, WANG Xin-feng,et al.Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading[J]. Journal of Materials Engineering, 2014,(5):73-77.
[3] SANTIUSTE C, SANCHEZ-SAEZ S, BARBERO E. Residual flexural strength after low velocity impact in glass/polyester composite beams[J]. Composite Structures, 2010,92(21):25-30.
[4] SELVUM P, UDAY K V, GREGG M J, et al. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology,2009, 69(6):839-846.
[5] 朱梅庄.复合材料结构设计手册[M].北京:航空工业出版社,2006.ZHU Mei-zhuang. Manual of Composite Structure Design[M]. Beijing:Aviation Industry Press,2006.
[6] 中国航空研究院. 复合材料结构设计手册[M].北京:航空工业出版社,2001.Chinese Aeronautical Establishment. Manual of Composite Structure Design[M]. Beijing:Aviation Industry Press,2001.
[7] RAY B C. Temperature effect during humid aging on interfaces of glass and carbon fibers reinforced epoxy composites[J]. Journal of Colloid and Interface Science,2006,298(1):111-117.
[8] KONG C W,LEE I C,KIM C G,et al. Post-buckling and failure of stiffened composite panels under axial compression[J]. Composite Structures,1998,42(1):13-21.
[9] KNIGHT N F,STARNES J H.Postbuckling behavior of selected curved stiffened graphite-epoxy panels loaded in compression[J].AIAA Journal,1988,26(3):344-352.
[10] ORIFICI A C,De ZARATE ALBERDI I O,THOMSON R S,et al. Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J]. Composites Science and Technology,2008,68(15):3150-3160.
[11] 孔斌,叶强,陈普会,等.复合材料整体加筋板轴压后屈曲的传载机制[J].复合材料学报,2010,27(5):142-149. KONG Bin, YE Qiang, CHEN Pu-hui,et al. Post-buckling load transfer mechanisms of an integrated composite panel under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2010, 27(5):142-149.
[12] 孔斌,叶强,陈普会,等. 复合材料整体加筋板轴压后屈曲失效表征[J].复合材料学报, 2010, 27 (5):150-155. KONG Bin, YE Qiang, CHEN Pu-hui, et al. Post-buckling failure characteristics of an integrated composite panel under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2010, 27 (5):150-155.
[13] 王菲菲,崔德刚,熊强,等.复合材料加筋板后屈曲承载能力工程分析方法[J].北京航空航天大学学报,2013,39(4):494-497. WANG Fei-fei, CUI De-gang, XIONG Qiang, et al. Engineering analysis of post-buckling loading capability for composite stiffened panels[J].Journal of Beijing University of Aeronautics and Astronautics, 2013,39(4):494-497.
[14] PATEL S R,CASE S W.Durability of a graphite/epoxy woven composite under combined hygrothermal conditions[J].International Journal of Fatigue,2000,22(9):809-820.
[15] 潘文革,矫桂琼,熊伟,等.二维编织层压板湿热环境下冲击后压缩性能的试验研究[J].航空材料学报,2005,25(4):40-44. PAN Wen-ge,JIAO Gui-qiong,XIONG Wei,et al. Experimental studies of CAI of woven-fiber laminates composite on hygrothermal environment[J].Journal of Aeronautical Materials, 2005,25 (4):40-44.
[16] 冯青,李敏,顾轶卓,等.不同湿热条件下碳纤维/环氧复合材料湿热性能试验研究[J].复合材料学报,2010, 27 (6):16-20. FENG Qing, LI Min, GU Yi-zhuo,et al. Experimental reasearch on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27(6):16-20.
[17] 曹东,张晓云,陆峰,等.先进复合材料T300/5405综合环境实验谱的研究[J].材料工程,2014,(7):73-78. CAO Dong, ZHANG Xiao-yun, LU Feng, et al. Synthetical environmental spectrum aging of T300/5405 advanced composite material[J]. Journal of Materials Engineering, 2014,(7):73-78.
[18] American Society for Testing and Materials. ASTM D5229/D5229M Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials[S]. US:ASTM,2004.
[19] 杨序纲.复合材料界面[M].北京:化学工业出版社,2010. YANG Xu-gang. Interface of Composite Materials[M].Beijing:Chemistry Industry Press,2010.
[20] OWENS G A, SCHOFIELD S E. Thermal cycling and mechanical property assessment of carbon fibre fabric reinforced PMR-15 polyimide laminates[J].Composites Science and Technology, 1988, 33(11):177-190.
[21] ZHANG A-ying, LI Di-hong, LIU Hai-bao, et al. Qualitative separation of the effect of voids on the bending fatigue performance of hygrothermal conditioned carbon/epoxy composites[J]. Materials and Design,2011, 32(10):4803-4809.
[22] KHALED M. Long term environmental effects on physical properties of vinylester composite pipes[J]. Polymer Testing, 2012,31(11):76-82.
[23] SUN Pei, ZHAO Yan, LUO Yun-feng, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design,2011,32(8-9):4341-4347.
[24] 张利军,肇研,罗云烽,等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程,2012,(2):25-29. ZHANG Li-jun, ZHAO Yan, LUO Yun-feng, et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012,(2):25-29.
[1] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[2] 徐荣章, 凌晓涛, 贾利勇. 成型工艺对复合材料帽型加筋板轴压特性的影响[J]. 材料工程, 2018, 46(4): 152-157.
[3] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[4] 许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
[5] 崔璐, 石红梅, 张涛, 王澎, 李臻. 热交变载荷下10% Cr耐热钢蠕变疲劳裂纹萌生特征[J]. 材料工程, 2017, 45(9): 143-148.
[6] 郑吉良, 彭明军, 孙勇. 等腰梯形蜂窝芯玻璃钢夹芯板的面外压缩性能[J]. 材料工程, 2017, 45(2): 72-79.
[7] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[8] 方宜武, 王显峰, 顾善群, 肖军. 自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程, 2015, 43(4): 47-52.
[9] 李奇, 王宪成, 蔡志海, 底月兰, 何星. null[J]. 材料工程, 2014, 0(6): 56-61.
[10] 严飙, 文立伟. 自动铺缠预浸带热压接研究[J]. 材料工程, 2014, 0(5): 7-11.
[11] 刘建, 张永振, 杜三明, 刘敬超. PTFE编织复合材料摩擦特性研究[J]. 材料工程, 2012, 0(8): 69-72.
[12] 罗楚养, 熊峻江, 益小苏, 张子龙, 刘刚. 复合材料蒙皮-加筋大开口结构优化设计[J]. 材料工程, 2011, 0(4): 9-13.
[13] 刘慧丛, 邢阳, 李卫平, 朱立群. 湿热贮存环境下电子器件表面镀层的腐蚀研究[J]. 材料工程, 2010, 0(2): 58-63.
[14] 任吉林, 舒铭航, 伍家驹, 宋凯, 陈曦, 陈晨. 18CrNi4A钢力-磁效应的ANSYS模拟[J]. 材料工程, 2009, 0(11): 40-44.
[15] 宁俊生, 范亚夫, 彭秀峰. 镁合金在大变形和高应变率下塑性变形研究进展[J]. 材料工程, 2007, 0(9): 67-73,80.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持