Influence of Hygrothermal Environment on Compressive Buckling and Post-buckling Performance of Aero Composite Stiffened Panel
FENG Yu1, HE Yu-ting1, AN Tao1, CUI Rong-hong1, SHAO Qing1, FAN Chao-hua2
1. Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an 710038, China;
2. Military Representative Office of PLA Residing in Factory 122, Harbin 150060, China
Abstract:Aero composite stiffened panel achieved absorbing moisture saturation in hygrothermal environment (70℃ distilled water). The compressive experiments were conducted on the untreated composite stiffened panels(type A) and the saturated ones(type B).Failure modes of the both types stiffened panels are similar with three major ways, including fracture and debonding of stiffeners together with the splitting and ripping of the panels. The fracture locations of type A are around the middle of panels while those of type B are towards either end of the panels, indicating the uncertainty of fracture locations for type B. The buckling patterns for both types are buckling of panels between stiffeners and buckling of the two middle stiffeners. The bending direction of type B is opposite to that of type A in the panel of same position, showing hygrothermal environment imposes much effect on the bending direction of panels. There still exists a post-buckling process for type B under compression, showing hygrothermal environment has less effect on the buckling load and more effect on the failure load of panels, whose buckling load and failure load decrease by 3.1% and 22.2%, respectively, compared with those of type A.
冯宇, 何宇廷, 安涛, 崔荣洪, 邵青, 范超华. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.
FENG Yu, HE Yu-ting, AN Tao, CUI Rong-hong, SHAO Qing, FAN Chao-hua. Influence of Hygrothermal Environment on Compressive Buckling and Post-buckling Performance of Aero Composite Stiffened Panel. Journal of Materials Engineering, 2015, 43(5): 81-88.
[1] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.SHEN Guan-lin, HU Geng-kai. Mechanics of Composite Materials[M].Beijing:Tsinghua University Press,2006.
[2] 蔡登安,周光明,王新峰,等.双向玻纤织物复合材料双轴拉伸载荷下的力学行为[J]. 材料工程,2014,(5):73-77.CAI Deng-an, ZHOU Guang-ming, WANG Xin-feng,et al.Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading[J]. Journal of Materials Engineering, 2014,(5):73-77.
[3] SANTIUSTE C, SANCHEZ-SAEZ S, BARBERO E. Residual flexural strength after low velocity impact in glass/polyester composite beams[J]. Composite Structures, 2010,92(21):25-30.
[4] SELVUM P, UDAY K V, GREGG M J, et al. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology,2009, 69(6):839-846.
[5] 朱梅庄.复合材料结构设计手册[M].北京:航空工业出版社,2006.ZHU Mei-zhuang. Manual of Composite Structure Design[M]. Beijing:Aviation Industry Press,2006.
[6] 中国航空研究院. 复合材料结构设计手册[M].北京:航空工业出版社,2001.Chinese Aeronautical Establishment. Manual of Composite Structure Design[M]. Beijing:Aviation Industry Press,2001.
[7] RAY B C. Temperature effect during humid aging on interfaces of glass and carbon fibers reinforced epoxy composites[J]. Journal of Colloid and Interface Science,2006,298(1):111-117.
[8] KONG C W,LEE I C,KIM C G,et al. Post-buckling and failure of stiffened composite panels under axial compression[J]. Composite Structures,1998,42(1):13-21.
[9] KNIGHT N F,STARNES J H.Postbuckling behavior of selected curved stiffened graphite-epoxy panels loaded in compression[J].AIAA Journal,1988,26(3):344-352.
[10] ORIFICI A C,De ZARATE ALBERDI I O,THOMSON R S,et al. Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J]. Composites Science and Technology,2008,68(15):3150-3160.
[11] 孔斌,叶强,陈普会,等.复合材料整体加筋板轴压后屈曲的传载机制[J].复合材料学报,2010,27(5):142-149. KONG Bin, YE Qiang, CHEN Pu-hui,et al. Post-buckling load transfer mechanisms of an integrated composite panel under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2010, 27(5):142-149.
[12] 孔斌,叶强,陈普会,等. 复合材料整体加筋板轴压后屈曲失效表征[J].复合材料学报, 2010, 27 (5):150-155. KONG Bin, YE Qiang, CHEN Pu-hui, et al. Post-buckling failure characteristics of an integrated composite panel under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2010, 27 (5):150-155.
[13] 王菲菲,崔德刚,熊强,等.复合材料加筋板后屈曲承载能力工程分析方法[J].北京航空航天大学学报,2013,39(4):494-497. WANG Fei-fei, CUI De-gang, XIONG Qiang, et al. Engineering analysis of post-buckling loading capability for composite stiffened panels[J].Journal of Beijing University of Aeronautics and Astronautics, 2013,39(4):494-497.
[14] PATEL S R,CASE S W.Durability of a graphite/epoxy woven composite under combined hygrothermal conditions[J].International Journal of Fatigue,2000,22(9):809-820.
[15] 潘文革,矫桂琼,熊伟,等.二维编织层压板湿热环境下冲击后压缩性能的试验研究[J].航空材料学报,2005,25(4):40-44. PAN Wen-ge,JIAO Gui-qiong,XIONG Wei,et al. Experimental studies of CAI of woven-fiber laminates composite on hygrothermal environment[J].Journal of Aeronautical Materials, 2005,25 (4):40-44.
[16] 冯青,李敏,顾轶卓,等.不同湿热条件下碳纤维/环氧复合材料湿热性能试验研究[J].复合材料学报,2010, 27 (6):16-20. FENG Qing, LI Min, GU Yi-zhuo,et al. Experimental reasearch on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27(6):16-20.
[17] 曹东,张晓云,陆峰,等.先进复合材料T300/5405综合环境实验谱的研究[J].材料工程,2014,(7):73-78. CAO Dong, ZHANG Xiao-yun, LU Feng, et al. Synthetical environmental spectrum aging of T300/5405 advanced composite material[J]. Journal of Materials Engineering, 2014,(7):73-78.
[18] American Society for Testing and Materials. ASTM D5229/D5229M Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials[S]. US:ASTM,2004.
[19] 杨序纲.复合材料界面[M].北京:化学工业出版社,2010. YANG Xu-gang. Interface of Composite Materials[M].Beijing:Chemistry Industry Press,2010.
[20] OWENS G A, SCHOFIELD S E. Thermal cycling and mechanical property assessment of carbon fibre fabric reinforced PMR-15 polyimide laminates[J].Composites Science and Technology, 1988, 33(11):177-190.
[21] ZHANG A-ying, LI Di-hong, LIU Hai-bao, et al. Qualitative separation of the effect of voids on the bending fatigue performance of hygrothermal conditioned carbon/epoxy composites[J]. Materials and Design,2011, 32(10):4803-4809.
[22] KHALED M. Long term environmental effects on physical properties of vinylester composite pipes[J]. Polymer Testing, 2012,31(11):76-82.
[23] SUN Pei, ZHAO Yan, LUO Yun-feng, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design,2011,32(8-9):4341-4347.
[24] 张利军,肇研,罗云烽,等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程,2012,(2):25-29. ZHANG Li-jun, ZHAO Yan, LUO Yun-feng, et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012,(2):25-29.