Please wait a minute...
材料工程  2015, Vol. 43 Issue (5): 89-100    DOI: 10.11868/j.issn.1001-4381.2015.05.015
  综述 本期目录 | 过刊浏览 | 高级检索 |
董慧民1, 安学锋1,2, 益小苏1,2, 闫丽1,2, 苏正涛1, 包建文1,2
1. 北京航空材料研究院, 北京 100095;
2. 中航复合材料有限责任公司, 北京 101300
Progress in Research on Low Velocity Impact Properties of Fibre Reinforced Polymer Matrix Composite
DONG Hui-min1, AN Xue-feng1,2, YI Xiao-su1,2, YAN Li1,2, SU Zheng-tao1, BAO Jian-wen1,2
1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(2066 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了连续纤维增强聚合物基复合材料的低速冲击响应研究进展.讨论了测试方法及相关影响参数,例如冲头的形状、冲击速率对复合材料冲击的影响;介绍了冲击损伤的类型,进一步描述了层压板结构参数(如层合板厚度,铺层和缝纫)、复合材料组分材料性能(如纤维,树脂和纤维/树脂界面)以及预应力、环境条件等的影响;提出了纤维增强聚合物基复合材料冲击响应研究今后的发展方向.
E-mail Alert
关键词 复合材料纤维增强聚合物冲击损伤动态冲击失效模式    
Abstract:Research progress on the low velocity impact response of continuous fibre reinforced polymer matrix composites was reviewed. The effect of testing methods and the related affecting parameters, such as impactor shape and impact velocity on the impact to composite, was discussed. Major impact-induced damage modes were introduced. Furthermore, the influences of laminate structural parameters, like laminate thickness, layup and stitching, together with the properties of component,such as fibre, resin and fibre/resin interface, preload and environment on impact properties of composite were described. The development direction of future research was put forward on the impact response of fibre reinforced polymer matrix composite.
Key wordscomposite    fibre reinforced polymer    impact damage    dynamic impact    failure mode
收稿日期: 2014-09-17      出版日期: 2015-05-20
中图分类号:  TB332  
通讯作者: 益小苏(1953-),男,博士,教授,博士生导师,主要从事树脂基复合材料方向研究工作,联系地址:北京市81信箱3分箱(100095),     E-mail:
董慧民, 安学锋, 益小苏, 闫丽, 苏正涛, 包建文. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5): 89-100.
DONG Hui-min, AN Xue-feng, YI Xiao-su, YAN Li, SU Zheng-tao, BAO Jian-wen. Progress in Research on Low Velocity Impact Properties of Fibre Reinforced Polymer Matrix Composite. Journal of Materials Engineering, 2015, 43(5): 89-100.
链接本文:      或
[1] 益小苏.先进树脂基复合材料高性能化理论与实践[M]. 北京:国防工业出版社, 2011. YI X S. Theory and Application of High-performance Polymer Matrix Composites[M]. Beijng:National Defense Industry Press, 2011.
[2] BYRES B A. Behaviour of damaged graphite/epoxy laminates under compression loading[a]. NASA CR-159293[r]. Washington D C:National Aeronautics and Space Administration, 1980.
[3] CHAWLA K K. Composite Materials:Science and Engineering[M]. 3rd ed. New York:Springer, 2012.
[4] YASAEE M, BOND I P, TRASK R S, et al. Damage control using discrete thermoplastic film inserts[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(6):978-989.
[5] ALI M, JOSHI S C. Impact damage resistance of CFRP prepreg laminates with dispersed CSP particles into ply interfaces[J]. International Journal of Damage Mechanics, 2012, 21(8):1106-1127.
[6] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12.
[7] CANTWELL W J, MORTON J. The impact resistance of composite materials-a review[J]. Composites, 1991, 22(5):347-362.
[8] SJOBLOM P O, HARTNESS J T, CORDELL T M. On low velocity impact testing of composite materials[J]. Journal of Composite Materials, 1988, 22(1):30-52.
[9] SHIVAKUMAR K N, ELBER W, ILLG W. Prediction of low velocity impact damage in thin circular laminates[J]. AIAA Journal, 1985, 23(3):442-449.
[10] OLSSON R. Mass criterion for wave controlled impact response of composite plates[J]. Composites Part A:Applied Science and Manufacturing, 2000, 31(8):879-887.
[11] SCHONBERG W P. Hypervelocity impact response of spaced composite material structures[J]. International Journal of Impact Engineering, 1990, 10(1):509-523.
[12] JOSHI S P, SUN C T. Impact-induced fracture initiation and detailed dynamic stress field in the vicinity of impact[A].Proceedings of American Society of Composites 2nd Technical Conference[C]. Newark:DE, 1987. 177-185.
[13] ROBINSON P, DAVIES G. Impactor mass and specimen geometry effects in low velocity impact of laminated composites[J]. International Journal of Impact Engineering, 1992, 12(2):189-207.
[14] DAVIES D, ROBINSON P.Predicting failure by debonding/delamination[A]. AGARD:74th Structures and Materials Meeting[C]. Greece:Patras, 1992. 25-29.
[15] YAGHOUBI S A, LIAW B. Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams[J]. International Journal of Impact Engineering, 2012, 54:138-148.
[16] SEVKAT E. Experimental and numerical approaches for estimating ballistic limit velocities of woven composite beams[J]. International Journal of Impact Engineering, 2012, 45:16-27.
[17] LIU D, MALVERN L E. Matrix cracking in impacted glass/epoxy plates[J]. Journal of Composite Materials, 1987, 21(7):594-609.
[18] PEGORETTI A, CRISTELLI I, MIGLIARESI C. Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination[J]. Composites Science and Technology, 2008, 68(13):2653-2662.
[19] SHYR T W, PAN Y H. Impact resistance and damage characteristics of composite laminates[J]. Composite Structures, 2003, 62(2):193-203.
[20] 益小苏. 先进复合材料技术研究与发展[M]. 北京:国防工业出版社, 2006. YI X S. Research and Development of Advanced Composites Technology[M]. Beijng:National Defense Industry Press, 2006.
[21] DAVIES G, OLSSON R. Impact on composite structures[J]. The Aeronautical Journal, 2004, 108(1089):541-563.
[22] RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A:Applied Science and Manufacturing, 1996,27(12):1123-1131.
[23] SALEHI-KHOJIN A, MAHINFALAH M, BASHIRZADEH R, et al. Temperature effects on Kevlar/hybrid and carbon fiber composite sandwiches under impact loading[J]. Composite Structures, 2007, 78(2):197-206.
[24] CANTWELL W J, MORTON J. Geometrical effects in the low velocity impact response of CFRP[J]. Composite Structures, 1989, 12(1):39-59.
[25] KOSTOPOULOS V, BALTOPOULOS A, KARAPAPPAS P, et al. Impact and after-impact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes[J]. Composites Science and Technology, 2010, 70(4):553-563.
[26] CARTIE D D R, IRVING P E. Effect of resin and fibre properties on impact and compression after impact performance of CFRP[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33(4):483-493.
[27] ABRATE S. Impact on Composite Structures[M]. London:Cambridge University Press, 1998.
[28] 王丹勇, 温卫东. 复合材料单向层合板损伤失效实验研究[J]. 复合材料学报, 2007, 24(5):142-148. WANG D Y, WEN W D. Experimental research on damage failure of unidirectional laminas[J]. Acta Materiae Compositae Sinica, 2007, 24(5):142-148.
[29] GARNIER C, PASTOR M L, EYMA F, et al. The detection of aeronautical defects in situ on composite structures using non destructive testing[J]. Composite Structures, 2011, 93(5):1328-1336.
[30] 刘松平, 刘菲菲, 郭恩明, 等. 我国航空材料和结构先进无损检测技术之应用与发展[J]. 无损检测, 2013,35(7):64-69. LIU S P,LIU F F,GUO E M, et al. Advanced NDT&E techniques for aero-materials and structures in China[J]. Nondestructive Testing,2013,35(7):64-69.
[31] HONG S, LIU D. On the relationship between impact energy and delamination area[J]. Experimental Mechanics, 1989, 29(2):115-120.
[32] HULL D, SHI Y B. Damage mechanism characterization in composite damage tolerance investigations[J]. Composite Structures, 1993, 23(2):99-102.
[33] DOREY G. Impact damage tolerance and assessment in advanced composite materials[A]. Seminar on Advanced Composites[C]. UK:Cranfield Institute of Technology, 1986.
[34] DOREY G. Impact damage in composites-development, consequences, and prevention[A]. Proceedings of the 6th International Conference on Composite Materials and 2nd European Conference on Composite Materials[C]. London:Imperial College, 1988. 1-26.
[35] DOREY G, SIGETY P, STELLBRINK K, et al. Impact damage tolerance of carbon fibre and hybrid laminates[A]. RAE Technical Report-87057[R].Farnborough, UK:Royal Aerospace Establishment, 1987.
[36] CHOI H Y, DOWNS R J, CHANG F K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact:part I experiments[J]. Journal of Composite Materials, 1991, 25(8):992-1011.
[37] JOSHI S P, SUN C T. Impact induced fracture in a laminated composite[J]. Journal of Composite Materials, 1985, 19(1):51-66.
[38] GARG A. Delamination-a damage mode in composite structures[J]. Engineering Fracture Mechanics, 1988, 29(5):557-584.
[39] LIU S, CHANG F K. Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter[J]. Journal of Composite Materials, 1994, 28(10):940-977.
[40] AMARO A M, REIS P N B, De MOURA M, et al. Influence of open holes on composites delamination induced by low velocity impact loads[J]. Composite Structures, 2013, 97:239-244.
[41] SUN C T, MANOHARAN M G. Growth of delamination cracks due to bending in a[90°5/0°5/90°5] laminate[J]. Composites Science and Technology, 1989, 34(4):365-377.
[42] HOJO M, KAGEYAMA K, TANAKA K. Prestandardization study on mode I interlaminar fracture toughness test for CFRP in Japan[J]. Composites, 1995, 26(4):243-255.
[43] TAKAKA K, KAGEYAMA K, HOJO M. Prestandardization study on mode II interlaminar fracture toughness test for CFRP in Japan[J]. Composites, 1995, 26(4):257-267.
[44] CHANG F K, CHOI H Y, JENG S T. Study on impact damage in laminated composites[J]. Mechanics of Materials, 1990, 10(1-2):83-95.
[45] ABRATE S. Impact Engineering of Composite Structures[M]. Germany:Springer Vienna, 2011.
[46] EL-HABAK A M. Effect of impact perforation load on GFRP composites[J]. Composites, 1993, 24(4):341-345.
[47] AGRAWAL S, SINGH K K, SARKAR P K. Impact damage on fibre-reinforced polymer matrix composite-a review[J]. Journal of Composite Materials, 2014, 48(3):317-332.
[48] MITREVSKI T, MARSHALL I H, THOMSON R, et al. The effect of impactor shape on the impact response of composite laminates[J]. Composite Structures, 2005, 67(2):139-148.
[49] ABRATE S. Impact on laminated composite materials[J]. Applied Mechanics Reviews, 1991, 44(4):155-190.
[50] GONZÁLEZ E V, MAIMÍ P, CAMANHO P P, et al. Simulation of drop-weight impact and compression after impact tests on composite laminates[J]. Composite Structures, 2012, 94(11):3364-3378.
[51] HITCHEN S A, KEMP R M J. The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite[J]. Composites, 1995, 26(3):207-214.
[52] KULKARNI M D, GOEL R, NAIK N K. Effect of back pressure on impact and compression-after-impact characteristics of composites[J]. Composite Structures, 2011, 93(2):944-951.
[53] KONDO H, AOKI Y, HIRAOKA K. Residual indentation, delamination area and CAI strength of CFRP laminate under low-velocity impact[A].Sixteenth International Conference on Composite Materials[C]. Kyoto:the Japan Society for Composite Materials, 2007. 1-7.
[54] WAKAYAMA S, KOBAYASHI S, IMAI T, et al. Evaluation of burst strength of FW-FRP composite pipes after impact using pitch-based low-modulus carbon fiber[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):2002-2010.
[55] YANG F J, CANTWELL W J. Impact damage initiation in composite materials[J]. Composites Science and Technology, 2010, 70(2):336-342.
[56] DATTA S, KRISHNA A V, RAO R. Low velocity impact damage tolerance studies on glass-epoxy laminates-effects of material, process and test parameters[J]. Journal of Reinforced Plastics and Composites, 2004, 23(3):327-345.
[57] 程小全, 吴学仁. 复合材料层合板低速冲击损伤容限的改进方法和影响因素[J]. 高分子材料科学与工程, 2002, 18(3):20-25. CHENG X Q, WU X R. Methods for improving damage tolerance of composite laminates after low velocity impact and their influence factors[J]. Polymer Materials Science & Engineering, 2001, 18(3):20-25.
[58] BAUCOM J N, ZIKRY M A. Low-velocity impact damage progression in woven E-glass composite systems[J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(5):658-664.
[59] 温卫东, 崔海坡, 徐颖.T300/BMP-316复合材料板冲击损伤研究[J]. 航空动力学报, 2007, 22(5):749-754. WEN W D, CUI H P, XU Y. Research on impact damage of T300/BMP-316 composite laminates[J]. Journal of Aerospace Power, 2007, 22(5):749-754.
[60] VACHON P L, BRAILOVSKI V, TERRIAULT P. Impact-induced damage and damage propagation under flexural load in TiNi and Kevlar-stitched carbon/epoxy laminates[J]. Composite Structures, 2013,100:424-435.
[61] 桂良进, 程小全, 寇长河, 等. 缝纫对复合材料层合板强度和抗冲击性能的影响[J]. 航空学报, 2000, 21(4):368-371. GUI L J, CHENG X Q, KOU C H, et al. Effect of stitching on strength and impact damage resistance of composites laminates[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(4):368-371.
[62] ADANUR S, TSAO Y P, TAM C W. Improving fracture resistance of laminar textile composites by third direction reinforcement[J]. Composites Engineering, 1995, 5(9):1149-1158.
[63] AYMERICH F, PRIOLO P. Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading[J]. International Journal of Impact Engineering, 2008, 35(7):591-608.
[64] TAN K T, WATANABE N, IWAHORI Y. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(12):1857-1868.
[65] HULL D. An Introduction to Composite Materials[M]. Cambridge:Cambridge University Press, 1981.
[66] KANG T J, KIM C. Energy-absorption mechanisms in Kevlar multiaxial warp-knit fabric composites under impact loading[J]. Composites Science and Technology, 2000, 60(3):773-784.
[67] CANTWELL W J, MORTON J. The significance of damage and defects and their detection in composite materials:a review[J]. Composites, 1991, 27(1):29-42.
[68] ORNAGHI H L, BOLNER A S, FIORIO R, et al. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding[J]. Journal of Applied Polymer Science, 2010, 118(2):887-896.
[69] HAZARIKA S B, CHOUDHURY S U, PANJA S S, et al. Fabrication and performance of hybrid betel nut and jute fiber reinforced epoxy composite[J]. Journal of Polymer Materials, 2013, 30(2):213-224.
[70] SARASINI F, TIRILL J, VALENTE M, et al. Hybrid composites based on aramid and basalt woven fabrics:impact damage modes and residual flexural properties[J]. Materials & Design, 2013, 49:290-302.
[71] HOSUR M V, ADBULLAH M, JEELANI S. Studies on the low-velocity impact response of woven hybrid composites[J]. Composite Structures, 2005, 67(3):253-262.
[72] 熊杰, 萧庆亮. 铺层混杂对复合材料层压板侵彻性能的影响[J]. 材料科学与工程学报, 2003, 21(2):178-182. XIONG J, XIAO Q L. Influence of ply stacking hybrid on penetration properties of composite laminates[J]. Journal of Materials Science and Engineering, 2003, 21(2):178-182.
[73] GUSTIN J, JONESON A, MAHINFALAH M. Low velocity impact of combination Kevlar/carbon sandwich composites[J].Composite Structures, 2005, 69(4):396-406.
[74] 张明, 安学锋, 刘立朋, 等. 航空级复合材料层板的定域相变控制与增韧研究进展[J]. 中国材料进展, 2009, 28(6):13-18. ZHANG M, AN X F, LIU L P, et al. Research and development of phase control and toughening at the interphase of aeronautical polymer matrix composites[J]. Materials China, 2009, 28(6):13-18.
[75] JORDAN W M, BRADLEY W L, MOULTON R J. Relating resin mechanical properties to composite delamination fracture toughness[J]. Journal of Composite Materials, 1987, 23(9):923-943.
[76] SELA N, ISHAI O. Interlaminar fracture toughness and toughening of laminated composite materials:a review[J]. Composites, 1989, 20(5):423-435.
[77] GOTTESMAN T, GIRSHOVICH S, DRUKKER E, et al. Residual strength of impacted composites:analysis and tests[J]. Journal of Composites Technology & Research, 1994, 16(3):244-255.
[78] LVAREZ V, BERNAL C R, FRONTINI P M, et al. The influence of matrix chemical structure on the mode I and II interlaminar fracture toughness of glass-fiber/epoxy composites[J]. Polymer Composites, 2003, 24(1):140-148.
[79] DRAKONAKIS V M, VELISARIS C N, SEFERIS J C, et al. Matrix hybridization in the interlayer for carbon fiber reinforced composites[J]. Polymer Composites, 2010, 31(11):1965-1976.
[80] CHOU I, INUTAKE T, NAMBA K. Correlation of damage resistance under low velocity impact and Mode II delamination resistance in CFRP laminates[J]. Advanced Composite Materials, 1999, 8(2):167-176.
[81] 杨玲. 碳纤维/环氧复合材料界面优化研究进展[J]. 高科技纤维与应用, 2013, 38(3):39-45. YANG L. Research progress of carbon fiber/epoxy composite interface optimization[J]. Hi-Tech Fiber & Application, 2013, 38(3):39-45.
[82] PARK S J, SEO M K, LEE J R. Roles of interfaces between carbon fibers and epoxy matrix on interlaminar fracture toughness of composites[J]. Composite Interfaces, 2006, 13(2-3):249-267.
[83] BADER M G, BAILEY J E, BELL I. The effect of fibre-matrix interface strength on the impact and fracture properties of carbon-fibre-reinforced epoxy resin composites[J]. Journal of Physics D:Applied Physics, 1973, 6(5):572-586.
[84] 侯满义, 李曙林. 应力条件下的飞机结构撞击损伤问题研究[J]. 航空科学技术, 2006,(1):35-37. HOU M Y, LI S L. Study on impact damage issue of aircraft structure under stress[J]. Aeronautical Science and Technology, 2006,(1):35-37.
[85] WHITTINGHAM B, MARSHALL I H, MITREVSKI T, et al. The response of composite structures with pre-stress subject to low velocity impact damage[J]. Composite Structures, 2004, 66(1):685-698.
[86] KURSUN A, SENEL M. Investigation of the effect of low-velocity impact on composite plates with preloading[J]. Experimental Techniques, 2013, 37(6):41-48.
[87] 程小全, 寇长河, 郦正能. 缝合复合材料可用性——环境条件下层压板的冲击后压缩性能[J]. 材料工程, 2004, (9):38-41. CHENG X Q, KOU C H, LI Z N. Properties of stitched composite laminates post-impact compression of laminates under different environment[J]. Journal of Materials Engineering, 2004, (9):38-41.
[88] 潘文革, 矫桂琼, 熊 伟, 等. 二维编织层压板湿热环境下冲击后压缩性能的实验研究[J]. 航空材料学报, 2005, 25(4):40-44. PAN W G, JIAO G Q, XIONG W, et al. Experimental studies of CAI of woven-fiber laminates composite on hygrothermal environment[J]. Journal of Aeronautical Materials, 2005, 25(4):40-44.
[89] IBEKWE S I, MENSAH P F, LI G, et al. Impact and post impact response of laminated beams at low temperatures[J]. Composite Structures, 2007, 79(1):12-17.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持