1 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China 2 School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Sydney NSW2006, Australia 3 School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350116, China
An as-cast Al0.3CoCrFeNi high entropy alloy with face-centered cubic (FCC) structure was processed by high-pressure torsion (HPT) to different strain values. This deformation-induced microstructure evolution was investigated by using Vickers hardness, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy. The results show that, during HPT processing,the crystal structure is not changed, remaining FCC structure, while nanocrystallization of grains is induced by HPT to 30nm of average grain size; grain refinement is achieved through twinning (including primary and secondary twinning), de-twinning (including primary and secondary de-twinning) and twin boundary subdivision; competition between twinning and de-twinning processes contributes to the decrease and subsequent increase in twin boundary spacing, while the minimum spacing of primary and secondary twins reach 2.7nm and 0.9nm, respectively.
YEH J W, CHEN S K, LIN S J, et al Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6 (5): 299- 303.
2
CHOUDHURI D, ALAM T, BORKAR T, et al Formation of a huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy[J]. Scripta Materialia, 2015, 100, 36- 39.
3
MA S G, ZHANG S F, QIAO J W, et al Superior high tensile elongation of a single-crystal CoCrFeNiAl0[J]. 3 high-entropy alloy by Bridgman solidification[J]. Intermetallics, 2014, 54 (6): 104- 109.
WANG Y F, YANG H Y Evolution of microstructure of AlCoCrFeNiTi0[J]. 5 high-entropy alloys in the process of solidification[J]. Rare Metal Materials and Engineering, 2014, 43 (10): 2459- 2462.
5
CHUANG M H, TSAI M H, WANG W R, et al Microstructure and wear behavior of AlxCo1[J]. 5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59 (16): 6308- 6317.
ZHANG S F, YANG X, ZHANG Y Processing and properties of Al0[J]. 3CrCuFeNi2 single crystal high-entropy alloy[J]. Acta Metallurgica Sinica, 2013, 49 (11): 1473- 1480.
REN M X, LI B S Phase analysis of CrFeCoNiCu high entropy alloy[J]. Journal of Materials Engineering, 2012, (1): 9- 12.
8
ZHANG Y, ZUO T T, TANG Z, et al Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61, 1- 93.
9
ROMANKOV S, PARK Y C, SHCHETININ I V, et al Atomic-scale intermixing, amorphization and microstructural development in a multicomponent system subjected to surface severe plastic deformation[J]. Acta Materialia, 2013, 61 (4): 1254- 1265.
10
PRADEEP K G, WANDERKA N, CHOI P, et al Atomic-scale compositional characterization of a nanocrystalline AlCrCuFe-NiZn high-entropy alloy using atom probe tomography[J]. Acta Materialia, 2013, 61 (12): 4696- 4706.
LIU S Q, HUANG W G Microstructure and mechanical performance of AlCoCrNiSix high-entropy alloy[J]. Journal of Materials Engineering, 2012, (1): 5- 8.
12
ZHILYAEV A P, LANGDON T G Using high-pressure torsion for metal processing: fundamentals and applications[J]. Progress in Materials Science, 2008, 53 (6): 893- 979.
REN G C, ZHAO G Q Homogeneous deformation analysis and microstructure properties study of AZ31 magnesium alloy in multi-pass equal channel angular pressing[J]. Journal of Materials Engineering, 2013, (10): 13- 19.
14
VALIEV R Z, LANGDON T G Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51 (7): 881- 981.
15
IWAHASHI Y, HORITA Z, NEMOTO, et al The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia, 1998, 46 (9): 3317- 3331.
16
WANG Y B, LIAO X Z, ZHAO Y H, et al The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion[J]. Materials Science and Engineering: A, 2010, 527 (18-19): 4959- 4966.
17
CAO Y, WANG Y B, AN X H, et al Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion[J]. Acta Materialia, 2014, 63, 16- 29.
NI S, LIAO X Z, ZHU Y T Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals[J]. Acta Metallurgica Sinica, 2014, 50 (2): 156- 168.
19
MOHAMED F A A dislocation model for the minimum grain size obtainable by milling[J]. Acta Materialia, 2003, 51 (14-15): 4107- 4119.
20
TANG Q H, HUANG Y, HUANG Y Y, et al Hardening of an Al0[J]. 3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J]. Materials Letters, 2015, 151, 126- 129.
21
HONG C S, TAO N R, HUANG X, et al Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation[J]. Acta Materialia, 2010, 58 (8): 3103- 3116.
22
ZHU Y T, LIAO X Z, WU X L Deformation twinning in nanocrystalline materials[J]. Progress in Materials Science, 2012, 57 (1): 1- 62.
23
CAO Y, WANG Y B, FIGUEIREDO R B, et al Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution[J]. Acta Materialia, 2011, 59 (10): 3903- 3914.
24
LIAO X Z, ZHOU F, LAVERNIA E J, et al Deformation mechanism in naonocrystalline Al: partial dislocation slip[J]. Applied Physics Letters, 2003, 83 (4): 632- 634.
25
WU Z X, ZHANG Y W, SROLOVITZ D J Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals[J]. Acta Materialia, 2011, 59 (18): 6890- 6900.
26
CAO Y, WANG Y B, CHEN Z B, et al De-twinning via secondary twinning in face-centered cubic alloys[J]. Materials Science and Engineering: A, 2013, 578, 110- 114.
27
ZHANG X, MISRA A, WANG H, et al Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films[J]. Applied Physics Letters, 2004, 84 (7): 1096- 1098.
28
LI X, WEI Y, LU L, et al Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature, 2010, 464 (7290): 877- 880.
29
WEI Y J The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals[J]. Materials Science and Engineering: A, 2011, 528 (3): 1558- 1566.