Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (12): 45-51    DOI: 10.11868/j.issn.1001-4381.2015.12.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变
唐群华1, 廖晓舟2, 戴品强1,3
1. 福州大学 材料科学与工程学院, 福州 350116;
2. 悉尼大学 航空航天及机械与机电工程学院, 悉尼 NSW2006;
3. 福建工程学院 材料科学与工程学院, 福州 350116
Microstructure Evolution of Al0.3CoCrFeNi High-entropy Alloy During High-pressure Torsion
TANG Qun-hua1, LIAO Xiao-zhou2, DAI Pin-qiang1,3
1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China;
2. School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Sydney NSW2006, Australia;
3. School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350116, China
全文: PDF(3049 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对面心立方(FCC)结构的Al0.3CoCrFeNi高熵合金进行不同应变量的高压扭转实验,利用维氏硬度仪、电子背散射衍射、X射线衍射仪以及透射电镜系统分析变形引起的组织结构演变。结果表明:高压扭转过程中合金晶体结构并未发生改变,仍然保持为FCC结构,但引发其晶粒纳米化,平均晶粒尺寸达到30nm。晶粒细化主要是通过孪晶(包含初次孪晶与二次孪晶)、去孪晶(包含初次去孪晶与二次去孪晶)以及孪晶界分割晶粒的过程实现。孪晶和随后去孪晶的竞争作用导致孪晶宽度先减小后增大,初次孪晶和二次孪晶的最小宽度分别为2.7nm和0.9nm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐群华
廖晓舟
戴品强
关键词 高熵合金高压扭转晶粒细化孪晶去孪晶    
Abstract:An as-cast Al0.3CoCrFeNi high entropy alloy with face-centered cubic (FCC) structure was processed by high-pressure torsion (HPT) to different strain values. This deformation-induced microstructure evolution was investigated by using Vickers hardness, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy. The results show that, during HPT processing,the crystal structure is not changed, remaining FCC structure, while nanocrystallization of grains is induced by HPT to 30nm of average grain size; grain refinement is achieved through twinning (including primary and secondary twinning), de-twinning (including primary and secondary de-twinning) and twin boundary subdivision; competition between twinning and de-twinning processes contributes to the decrease and subsequent increase in twin boundary spacing, while the minimum spacing of primary and secondary twins reach 2.7nm and 0.9nm, respectively.
Key wordshigh-entropy alloy    high-pressure torsion    grain refinement    twinning    de-twinning
收稿日期: 2015-05-30      出版日期: 2015-12-23
中图分类号:  TG146.1  
通讯作者: 戴品强(1963—),男,教授,博士,从事专业:纳米金属材料,联系地址:福建省福州市闽候大学城福州大学材料科学与工程学院309室(350116)     E-mail: pqdai@126.com
引用本文:   
唐群华, 廖晓舟, 戴品强. Al0.3CoCrFeNi高熵合金高压扭转过程中的组织结构演变[J]. 材料工程, 2015, 43(12): 45-51.
TANG Qun-hua, LIAO Xiao-zhou, DAI Pin-qiang. Microstructure Evolution of Al0.3CoCrFeNi High-entropy Alloy During High-pressure Torsion. Journal of Materials Engineering, 2015, 43(12): 45-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.12.008      或      http://jme.biam.ac.cn/CN/Y2015/V43/I12/45
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials,2004,6(5):299-303.
[2] CHOUDHURI D, ALAM T, BORKAR T, et al. Formation of a huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy[J]. Scripta Materialia,2015,100:36-39.
[3] MA S G, ZHANG S F, QIAO J W, et al. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification[J]. Intermetallics,2014,54(6):104-109.
[4] 王毅飞, 杨海彧. 凝固过程中AlCoCrFeNiTi0.5高熵合金的组织结构演变[J]. 稀有金属材料与工程,2004,43(10):2459-2463. WANG Y F, YANG H Y. Evolution of microstructure of AlCoCrFeNiTi0.5 high-entropy alloys in the process of solidification[J]. Rare Metal Materials and Engineering,2014,43(10):2459-2462.
[5] CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia,2011,59(16):6308-6317.
[6] 张素芳, 杨潇, 张勇. Al0.3CrCuFeNi2高熵合金单晶材料的制备及性能[J]. 金属学报, 2013,49(11):1473-1480. ZHANG S F, YANG X, ZHANG Y. Processing and properties of Al0.3CrCuFeNi2 single crystal high-entropy alloy[J]. Acta Metallurgica Sinica,2013,49(11):1473-1480.
[7] 任明星, 李邦盛. CrFeCoNiCu多主元高熵合金的相分析[J]. 材料工程,2012,(1):9-12. REN M X, LI B S. Phase analysis of CrFeCoNiCu high entropy alloy[J]. Journal of Materials Engineering,2012,(1):9-12.
[8] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61:1-93.
[9] ROMANKOV S, PARK Y C, SHCHETININ I V, et al. Atomic-scale intermixing, amorphization and microstructural development in a multicomponent system subjected to surface severe plastic deformation[J]. Acta Materialia,2013,61(4):1254-1265.
[10] PRADEEP K G, WANDERKA N, CHOI P, et al. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFe-NiZn high-entropy alloy using atom probe tomography[J]. Acta Materialia,2013,61(12):4696-4706.
[11] 刘恕骞, 黄维刚. AlCoCrNiSix高熵合金微观组织结构与力学性能[J]. 材料工程,2012,(1):5-8. LIU S Q, HUANG W G. Microstructure and mechanical performance of AlCoCrNiSix high-entropy alloy[J]. Journal of Materials Engineering,2012,(1):5-8.
[12] ZHILYAEV A P, LANGDON T G. Using high-pressure torsion for metal processing: fundamentals and applications[J]. Progress in Materials Science,2008,53(6):893-979.
[13] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程,2013,(10):13-19. REN G C, ZHAO G Q. Homogeneous deformation analysis and microstructure properties study of AZ31 magnesium alloy in multi-pass equal channel angular pressing[J]. Journal of Materials Engineering,2013,(10):13-19.
[14] VALIEV R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science,2006,51(7):881-981.
[15] IWAHASHI Y, HORITA Z, NEMOTO, et al. The process of grain refinement in equal-channel angular pressing[J]. Acta Materialia,1998,46(9):3317-3331.
[16] WANG Y B, LIAO X Z, ZHAO Y H, et al. The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion[J]. Materials Science and Engineering:A,2010,527(18-19):4959-4966.
[17] CAO Y, WANG Y B, AN X H, et al. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion[J]. Acta Materialia,2014,63:16-29.
[18] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响[J]. 金属学报,2014,50(2):156-168. NI S, LIAO X Z, ZHU Y T. Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals[J]. Acta Metallurgica Sinica,2014,50(2):156-168.
[19] MOHAMED F A. A dislocation model for the minimum grain size obtainable by milling[J]. Acta Materialia,2003,51(14-15):4107-4119.
[20] TANG Q H, HUANG Y, HUANG Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J]. Materials Letters,2015,151:126-129.
[21] HONG C S, TAO N R, HUANG X, et al. Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation[J]. Acta Materialia,2010,58(8):3103-3116.
[22] ZHU Y T, LIAO X Z, WU X L. Deformation twinning in nanocrystalline materials[J]. Progress in Materials Science,2012,57(1):1-62.
[23] CAO Y, WANG Y B, FIGUEIREDO R B, et al. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution[J]. Acta Materialia,2011,59(10):3903-3914.
[24] LIAO X Z, ZHOU F, LAVERNIA E J, et al. Deformation mechanism in naonocrystalline Al: partial dislocation slip[J]. Applied Physics Letters,2003,83(4):632-634.
[25] WU Z X, ZHANG Y W, SROLOVITZ D J. Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals[J]. Acta Materialia,2011,59(18):6890-6900.
[26] CAO Y, WANG Y B, CHEN Z B, et al. De-twinning via secondary twinning in face-centered cubic alloys[J]. Materials Science and Engineering:A,2013,578:110-114.
[27] ZHANG X, MISRA A, WANG H, et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films[J]. Applied Physics Letters,2004,84(7):1096-1098.
[28] LI X, WEI Y, LU L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature,2010,464(7290):877-880.
[29] WEI Y J. The kinetics and energetics of dislocation mediated de-twinning in nano-twinned face-centered cubic metals[J]. Materials Science and Engineering:A,2011,528(3):1558-1566.
[1] 袁继慧, 陈辉明, 谢伟滨, 魏海根, 汪航, 杨斌. Cu-Cr-Ti-Si合金加工软化的机理[J]. 材料工程, 2020, 48(11): 140-146.
[2] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[3] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[4] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[5] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[6] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
[7] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[8] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[9] 赵海朝, 梁秀兵, 乔玉林, 柳建, 张志彬, 仝永刚. 激光熔覆高熵合金涂层的研究进展[J]. 材料工程, 2019, 47(10): 33-43.
[10] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[11] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[12] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[13] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[14] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[15] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn