Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (12): 69-74    DOI: 10.11868/j.issn.1001-4381.2015.12.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
基于频谱能量的材料晶粒尺寸表征方法
黎敏1, 周通1, 王善超1, 肖会芳2, 徐金梧1
1. 北京科技大学 机械工程学院, 北京 100083;
2. 北京科技大学 国家板带生产先进装备工程技术研究中心, 北京 100083
Characterization Method of Materials Grain Size Based on Spectrum Energy
LI Min1, ZHOU Tong1, WANG Shan-chao1, XIAO Hui-fang2, XU Jin-wu1
1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. National Engineering Research Center of Flat Rolling Equipment, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(1557 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究了利用超声频谱能量对材料晶粒尺寸进行表征的方法。通过不同的热处理方式获得了不同晶粒尺寸的奥氏体不锈钢材料,再分别利用衰减系数法、声速法和频谱能量法对材料的晶粒尺寸进行表征。结果表明:频谱能量法得到的衰减系数与平均晶粒尺寸呈非线性关系,晶粒尺寸的预测误差在4%~15%以内,优于传统的分析方法,证明了新方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎敏
周通
王善超
肖会芳
徐金梧
关键词 超声检测晶粒尺寸衰减系数声速频谱能量    
Abstract:A method to characterize the grain size of the material by the spectrum energy of ultrasonic signals was proposed. In order to study the new method, firstly, some austenitic stainless steel materials with different grain sizes were prepared by different heat treatment regimes. Then the grain sizes of those prepared materials were characterized by using the attenuation coefficient, velocity and spectrum energy, respectively. The results show that attenuation coefficient calculated by the proposed method and the average grain size exhibit nonlinear relationship. The predicted error of the grain sizes is within 4%-15%, which is superior to the conventional methods, and verifies the effectiveness of the proposed method
Key wordsultrasonic detection    grain size    attenuation coefficient    velocity    spectrum energy
收稿日期: 2014-09-24      出版日期: 2015-12-23
中图分类号:  TG115.28  
通讯作者: 黎敏(1980—),女,副教授,主要研究方向为超声无损检测、信号处理与模式识别,联系地址:北京科技大学机械工程学院(100083)     E-mail: limin@ustb.edu.cn
引用本文:   
黎敏, 周通, 王善超, 肖会芳, 徐金梧. 基于频谱能量的材料晶粒尺寸表征方法[J]. 材料工程, 2015, 43(12): 69-74.
LI Min, ZHOU Tong, WANG Shan-chao, XIAO Hui-fang, XU Jin-wu. Characterization Method of Materials Grain Size Based on Spectrum Energy. Journal of Materials Engineering, 2015, 43(12): 69-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.12.012      或      http://jme.biam.ac.cn/CN/Y2015/V43/I12/69
[1] SUNDIN S, ARTYMOWICZ D. Direct measurements of grain size in low-carbon steels using the laser ultrasonic technique[J]. Metallurgical and Materials Transactions A,2002,33(3):687-691.
[2] MILITZER M, MOREAU A, MAALEKIAN M. Laser-ultrasonic austenite grain size measurements in low-carbon steels[J]. Materials Science Forum,2012,715:407-414.
[3] 张婷,刘奎,王婷婷. 复合材料修理结构的缺陷特征与超声信号[J]. 航空材料学报,2015,35(1):66-70. ZHANG T, LIU K, WANG T T. Defect characteristics and ultrasonic signal of composite repair structure[J]. Journal of Aeronautical Materials,2015,35(1):66-70.
[4] PAPADAKIS E P. Ultrasonic attenuation and velocity in three transformation products in steel[J]. Journal of Applied Physics, 1964,35(5):1474-1482.
[5] KOPEC B, HANAK V. Using ultrasonic attenuation measurements to investigate anomalies in the structure of railway axles[J]. NDT International,1984,17(5):265-268.
[6] BOUDA A B, LEBAILI S, BENCHAALA A. Grain size influence on ultrasonic velocities and attenuation[J]. NDT & E International,2003,36(1):1-5.
[7] VNAL R, SARPVN IH, YALIM HA, et al. The mean grain size determination of boron carbide (B4C)-aluminium (Al) and boron carbide (B4C)-nickel (Ni) composites by ultrasonic velocity technique[J]. Materials Characterization,2006,56(3):241-244.
[8] AGHAIE-KHAFRI M, HONARVAR F, ZANGANEH S. Characterization of grain size and yield strength in AlSi 301 stainless steel using ultrasonic attenuation measurements[J]. Journal of Nondestructive Evaluation,2012,31(3):191-196.
[9] PALANICHAMY P, JOSEPH A, JAYAKUMAR T, et al. Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel[J]. NDT & E International,1995,28(3):179-185.
[10] 陈建忠, 史耀武. 低碳钢晶粒尺寸的超声无损评价技术[J]. 无损检测,2002,(9):391-394. CHEN J Z, SHI Y W. Ultrasonic nondestructive evaluation of the grain size of low carbon steel[J]. Nondestructive Testing,2002,(9):391-394.
[11] SHARMA G K, KUMAR A, RAO C B, et al. Short time Fourier transform analysis for understanding frequency dependent attenuation in austenitic stainless steel[J]. NDT & E International,2013,53:1-7.
[12] 张洪达,马世伟. Cr-Mo钢平均晶粒尺寸的超声无损评价[J]. 上海大学学报(自然科学版),2006,(2):162-165. ZHANG H D, MA S W. Ultrasonic nondestructive evaluation of average grain size of Cr-Mo steel[J]. Journal of Shanghai University(Natural Science Edition),2006,(2):162-165.
[13] BOUDA A B, ALJOHANI M S, MEBTOUCHE A, et al. Characterization of grains size by ultrasounds[J]. Key Engineering Materials,2011,(482):49-56.
[14] 李萍,程向梅,李安娜,等. 304不锈钢固溶产物晶粒尺寸的超声无损表征研究[J].材料工程,2013,(6):77-81. LI P, CHENG X M, LI A N, et al. Ultrasonic nondestructive characterization of average grain size in 304 stainless steel solution treatment products[J]. Journal of Materials Engineering,2013,(6):77-81.
[15] PAPADAKIS E P. Ultrasonic attenuation caused by scattering in polycrystalline media[J]. Physical Acoustics,2012,4:269-328.
[16] 王惠文,吴载斌,孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京:国防工业出版社,2006.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[3] 丁宁, 金士杰, 彭良明, 雷明凯, 林莉. Al0.26CoCrFeNiMn高熵合金再结晶组织演变超声表征[J]. 材料工程, 2019, 47(12): 71-77.
[4] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[5] 麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
[6] 秦鹏, 李萍, 侯天宇, 赵杰, 李廷举. 非线性超声检测的因素探讨及其在HR3C烟侧腐蚀的应用[J]. 材料工程, 2016, 44(11): 88-95.
[7] 张伟, 马志远, 赫丽华, 高剑英, 罗文, 林莉, 雷明凯. 基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演[J]. 材料工程, 2016, 44(10): 74-79.
[8] 徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
[9] 乔志霞, 李连进, 宁保群. 奥氏体化条件对675装甲钢中马氏体相变的影响[J]. 材料工程, 2014, 0(7): 5-9.
[10] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[11] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
[12] 李萍, 程向梅, 李安娜, 唐子乔. 304不锈钢固溶产物晶粒尺寸的超声无损表征研究[J]. 材料工程, 2013, 0(6): 77-81,86.
[13] 王铮, 何方成, 梁菁, 康丽红. 复合材料层板铺层方式对超声检测结果的影响[J]. 材料工程, 2013, (2): 50-54.
[14] 韩赞东, 王柄方, 原可义, 朱新杰. 奥氏体厚壁焊缝超声扫描检测成像[J]. 材料工程, 2012, 0(9): 62-65.
[15] 高晓进, 张峥. CFRP中孔隙几何形貌与超声衰减系数关系的研究[J]. 材料工程, 2012, 0(7): 59-63,70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn