Please wait a minute...
材料工程  2018, Vol. 46 Issue (7): 44-52    DOI: 10.11868/j.issn.1001-4381.2016.000011
  综述 本期目录 | 过刊浏览 | 高级检索 |
王昊1, 张辉2, 张继华1, 赵云峰1
1. 航天材料及工艺研究所, 北京 100076;
2. 清华大学 材料学院新型陶瓷与精细工艺国家重点实验室, 北京 100084
Research Progress on Graphene/Polymer Composites with Non-covalent Surface Modification
WANG Hao1, ZHANG Hui2, ZHANG Ji-hua1, ZHAO Yun-feng1
1. Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China;
2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2999 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯具有优异的力学、电学和热学等性能,被广泛应用于聚合物基复合材料的改性研究中。石墨烯表面惰性,与聚合物相容性较差,难以在复合材料中充分发挥优异的性能,因此需要对其进行表面修饰。与共价键表面修饰方法相比,对石墨烯进行非共价键表面修饰,可以在改善其表面活性的同时维持原始结构,更适合构筑高性能聚合物功能复合材料。本文综述了石墨烯非共价键表面修饰的研究进展,分析了采用非共价键修饰的石墨烯填充的复合材料结构与性能间的关系,讨论了复合材料存在的界面结合较弱问题,提出了复合材料低成本制备、微观结构精确调控的发展前景。
E-mail Alert
关键词 石墨烯非共价键表面修饰复合材料力学性能电学性能    
Abstract:Graphene possesses excellent mechanical, electrical and thermal properties, which has been wildly used in modification of polymer composites. However, graphene has poor compatibility with polymers due to its surface inactive properties. This weakness restricts the composites performances, so it is necessary to make a surface modification for graphene. The non-covalent surface modification method can protect the pristine structure of graphene and improve the surface activity, and this is suitable for building high performance functional composites. The current developments of the non-covalent surface modification on graphene were summarized,and the relationship between the structure and properties of composites filled by functional graphene were illustrated. Finally, some existing problems about weak interfacial strength of graphene based polymer composites were discussed.At the same time, its future perspective of low cost production and accurate microstructure control was proposed.
Key wordsgraphene    non-covalent surface modification    composite    mechanical property    electrical pro-perty
收稿日期: 2015-12-31      出版日期: 2018-07-20
中图分类号:  TB332  
通讯作者: 赵云峰(1964-),男,研究员,主要从事高分子材料及其应用方面研究工作,联系地址:北京9200信箱73分箱(100076),     E-mail:
王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
WANG Hao, ZHANG Hui, ZHANG Ji-hua, ZHAO Yun-feng. Research Progress on Graphene/Polymer Composites with Non-covalent Surface Modification. Journal of Materials Engineering, 2018, 46(7): 44-52.
链接本文:      或
[1] WALLACE P R. The band theory of graphite[J]. Physical Review,1947,71(9):622-634.
[2] KROTO H W,HEATH J R,O'BRIEN S C,et al. C60:buckminsterfullerene[J]. Nature,1985,318(6042):162-163.
[3] LIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
[4] MOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[5] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
[6] VERMA D,GOPE P C,SHANDILYAA,et al.Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites:a review[J]. Transactions of the Indian Institute of Metals,2014,67(6):803-816.
[7] RAO C N R,SOOD A K,VOGGU R,et al. Some novel attributes of graphene[J]. Journal of Physical Chemistry Letters,2010,1(2):572-580.
[8] LEE C,WEI X D,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[9] BOLOTIN K I,SIKES K J,JIANG Z,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9/10):351-355.
[10] AVOURIS P,CHEN Z H,PEREBEINOS V. Carbon-based electronics[J]. Nature Nanotechnology,2007,2(10):605-615.
[11] BALANDINAA,GHOSH S,BAO W Z,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
[12] KIM K S,ZHAO Y,JANG H,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457(7230):706-710.
[13] LIU C G,YU Z N,NEFF D,et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters,2010,10(12):4863-4868.
[14] WU S X,HE Q Y,TAN C L,et al. Graphene-based electrochemical sensors[J]. Small,2013,9(8):1160-1172.
[15] PUMERA M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science,2011,4(3):668-674.
[16] KUILLA T,BHADRA S,YAO D H,et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science,2010,35(11):1350-1375.
[17] RAMANATHAN T,ABDALA A A,STANKOVICH S,et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3(6):327-331.
[18] LI D,MULLER M B,GIJLE S,et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105.
[19] SI Y C,SAMULSKI E T. Synthesis of water soluble graphene[J]. Nano Letters,2008,8(6):1679-1682.
[20] LAYEK R K,NANDI A K. A review on synthesis and properties of polymer functionalized graphene[J]. Polymer,2013,54(19):5087-5103.
[21] KUILA T,BOSE S,MISHRA A K,et al. Chemical functionalization of graphene and its applications[J]. Progress in Materials Science,2012,57(7):1061-1105.
[22] SARAVANAN N,RAJASEKAR R, MAHALAKSHMI S, et al. Graphene and modified graphene-based polymer nanocomposites-a review[J]. Journal of Reinforced Plastics and Composites,2014,33(12):1158-1180.
[23] LI Y C,TANG J G,HUANG L J,et al. Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly(sodium 4-styrenesulfonate)[J]. Composites Part A:Applied Science and Manufacturing,2015,68:1-9.
[24] SCHWAMB T,BURG B R,SCHIRMER N C,et al. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures[J]. Nanotechnology,2009,20(40):405704.
[25] 张力,吴俊涛,江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展,2014,26(4):560-571. ZHANG L,WU J T,JIANG L. Graphene and its polymer nanocomposites[J]. Progress in Chemistry,2014,26(4):560-571.
[26] 范彦如,赵宗彬,万武波,等. 石墨烯非共价键功能化及应用研究进展[J]. 化工进展,2011,30(7):1509-1520. FAN Y R, ZHAO Z B, WAN W B,et al. Research progress of non-covalent functionalization and applications of graphene[J]. Chemical Industry and Engineering Progress,2011,30(7):1509-1520.
[27] 唐征海,郭宝春,张立群,等. 石墨烯/橡胶纳米复合材料[J]. 高分子学报,2014(7):865-877. TANG Z H, GUO B C, ZHANG L Q, et al. Graphene/rubber nanocomposites[J]. Acta Polymerica Sinica,2014(7):865-877.
[28] LOTYA M,HERNANDEZ Y,KING P J,et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of American Chemical Society,2009,131(10):3611-3620.
[29] LIU N,LUO F,WU H X,et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Advanced Functional Materials,2008,18(10):1518-1525.
[30] SHEN J M, FENG Y T. Formation of flower-like carbon nano-sheet aggregations and their electrochemical application[J]. Journal of Physical Chemistry C,2008,112(34):13114-13120.
[31] BERGER C,SONG Z M,LI X B,et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science,2006,312(5777):1191-1196.
[32] JIAO L Y,ZHANG L,WANG X R,et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458(7240):877-880.
[33] STANKOVICH S,DIKIN D A,PINER R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
[34] SMITH R J,LOTYA M,COLEMAN J N. The importance of repulsive potential barriers for the dispersion of graphene using surfactants[J]. New Journal of Physics,2010,12(12):125008.
[35] KUNDU A,LAYEK R K,NANDI A K. Enhanced fluorescent intensity of graphene oxide-methyl cellulose hybrid in acidic medium:sensing of nitro-aromatics[J]. Journal of Materials Chemistry,2012,22(16):8139-8144.
[36] HAO R,QIAN W,ZHANG L H,et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets[J]. Chemical Communications,2008,48:6576-6578.
[37] YANG Y K,HE C E,PENG R G,et al. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites[J]. Journal of Materials Chemistry,2012,12(12):5666-5675.
[38] YANG X M,LI L,SHANG S M,et al. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites[J]. Polymer,2010,51(15):3431-3435.
[39] CHANG H X,WANG G F,YANG A,et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode[J]. Advanced Functional Materials,2010,20(17):2893-2902.
[40] DE S,KING P J,LOTYA M,et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions[J]. Small,2010,6(3):458-464.
[41] HSIAO S T,MA C M,TIEN H W,et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite[J]. Carbon,2013,60:57-66.
[42] REN L L,LIU T X,GUO J,et al. A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction[J]. Nanotechnology,2010,21(33):335701.
[43] KE Q Q,LIU Y Q,LIU H J,et al. Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors[J]. RSC Advances,2014,4(50):26398-26406.
[44] XU Y X,BAI H,LU G W,et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of American Chemical Society,2008,130(18):5856-5857.
[45] TANG Z H,LEI Y D,GUO B C,et al. The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites[J]. Polymer,2012,53(2):673-680.
[46] GHOSH A,RAO K V,GEORGE S J,et al. Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate[J]. Chemistry-A European Journal,2010,16(9):2700-2704.
[47] KHANRA P,UDDIN M E,KIM N H,et al. Electrochemical performance of reduced graphene oxide surface-modified with 9-anthracene carboxylic acid[J]. RSC Advances,2015,5(9):6443-6451.
[48] AN N,ZHANG F H,HU Z G,et al. Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage[J]. RSC Advances,2015,5(30):23942-23951.
[49] TANG Z H,ZENG C F,LEI Y D,et al. Fluorescent whitening agent stabilized graphene and its composites with chitosan[J]. Journal of Materials Chemistry,2011,21(43):17111-17118.
[50] YANG Q,PAN X J,HUANG F,et al. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives[J]. Journal of Physical Chemistry C,2010,114(9):3811-3816.
[51] STANKOVICH S,PINER R D,CHEN X Q,et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-158.
[52] YANG H F,ZHANG Q X,SHAN C S,et al. Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte[J]. Langmuir,2010,26(9):6708-6712.
[53] QI X Y,PU K Y,LI H,et al. Amphiphilic graphene composites[J]. Angew Chem Int Ed Engl,2010,49(49):9426-9429.
[54] BAI H,XU Y X,ZHAO L,et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J]. Chemical Communications,2009,13:1667-1669.
[55] LIU Q,LIU Z F,ZHANG X Y,et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT[J]. Advanced Functional Materials,2009,19(6):894-904.
[56] KUMAR S,KUMAR S,SRIVASTAVA S,et al. Reduced graphene oxide modified smart conducting paper for cancer biosensor[J]. Biosensors & Bioelectronics,2015,73:114-122.
[57] KODALIV K,SCRIMGEOUR J,KIM S,et al. Nonperturbative chemical modification of graphene for protein micropatterning[J]. Langmuir,2011,27(3):863-865.
[58] LEE D Y,KHATUN Z,LEE J H,et al. Blood compatible graphene/heparin conjugate through noncovalent chemistry[J]. Biomacromolecules,2011,12(2):336-341.
[59] LV W,GUO M,LIANG M H,et al. Graphene-DNA hybrids:self-assembly and electrochemical detection performance[J]. Journal of Materials Chemistry,2010,20(32):6668-6673.
[60] PATIL A J,VICKERY J L,SCOTT T B,et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J]. Advanced Materials,2009,21(31):3159-3164.
[61] LIU J B,FU S H,YUAN B,et al. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. Journal of American Chemical Society,2010,132(21):7279-7281.
[62] SEDDON K R. Ionic liquids:a taste of the future[J]. Nature Materials,2003,2(6):363-365.
[63] TORIMOTO T,TSUDA T,OKAZAKI K,et al. New frontiers in materials science opened by ionic liquids[J]. Advanced Materials,2010,22(11):1196-1221.
[64] KIM T,LEE H,KIM J,et al. Synthesis of phase transferable graphene sheets using ionic liquid polymers[J]. ACS Nano,2010,4(3):1612-1618.
[65] RESTOLHO J,MATA J L,SARAMAGO B. On the interfacial behavior of ionic liquids:surface tensions and contact angles[J]. Journal of Colloid and Interface Science,2009,340(1):82-86.
[66] NUVOLI D,VALENTINI L,ALZARI V,et al. High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid[J]. Journal of Materials Chemistry,2011,21(10):3428-3431.
[67] WANG X Q, FULVIO P F, BAKER G A, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids[J]. Chemical Communications,2010,46(25):4487-4489.
[68] KIM T,KANG H C,TUNG T T,et al. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors[J]. RSC Advances,2012,2(23):8808-8812.
[69] KIM J,KIM S. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode[J]. Electrochimica Acta,2014,119:11-15.
[70] MAO L,LI Y,CHI C Y,et al. Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes[J]. Nano Energy,2014,6(10):119-128.
[71] KUNDU A, LAYEK R K, KUILA A, et al. Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid:an effective material for specific Au3+ ion sensors[J]. ACS Applied Materials & Interfaces,2012,4(10):5576-5582.
[72] 樊玮,张超,刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报,2013,30(1):14-21. FAN W,ZHANG C,LIU T X. Recent progress in graphene/polymer composite[J]. Acta Materiae Compositae Sinica,2013, 30(1):14-21.
[73] 汤龙程,万艳君,高晓宇,等. 石墨烯/聚合物纳米复合材料研究进展[J]. 科技导报,2013,31(27):71-79. TANG L C,WAN Y J,GAO X Y,et al. Recent advances in graphene/polymer nanocomposites[J]. Science & Technology Review,2013,31(27):71-79.
[74] POTTS J R,DREYER D R,BIELAWSKI C W,et al. Graphene-based polymer nanocomposites[J]. Polymer,2011,2(1):5-25.
[75] STANKOVICH S,DIKIN D A,DOMMETT G H B,et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
[76] KHAMLICH S,BARZEGAR F,NURU Z Y,et al. Polypyrrole/graphene nanocomposite:high conductivity and low percolation threshold[J]. Synthetic Metals,2014,198:101-106.
[77] CUI L,LIU J Q,WANG R,et al. A facile "graft from" method to prepare molecular-level dispersed graphene-polymer composites[J]. Journal of Polymer Science,Part A:Polymer Chemistry,2012,50(21):4423-4432.
[78] LUO J,JIANG S S,LIUR,et al. Synthesis of water dispersible polyaniline/poly(styrenesulfonic acid) modified graphene composite and its electrochemical properties[J]. Electrochimica Acta,2013,96:103-109.
[79] ZHOU X S,WU T B,HU B J,et al. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid[J]. Chemical Communications,2010,46(21):3663-3665.
[80] TUNG T T,KIM T Y,SHIM J P,et al. Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene)[J]. Organic Electronics,2011,12(12):2215-2224.
[81] SNOOK G A,KAO P,BESTA S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sour-ces,2011,196(1):1-12.
[82] YAN X S,ZHANG X D,LIU H L,et al. Fabrication of SDBS intercalated-reduced graphene oxide/polypyrrole nanocomposites for supercapacitors[J]. Synthetic Metals,2014,196:1-7.
[83] DAMLIN P,SUOMINEN M,HEINONEN M, et al. Non-covalent modification of graphene sheets in PEDOT composite materials by ionic liquids[J]. Carbon,2015,93:533-543.
[84] ROY N,SENGUPTA R,BHOWMICK A K. Modifications of carbon for polymer composites and nanocomposites[J]. Progress in Polymer Science,2012,37(6):781-819.
[85] WANG X L,BAI H,YAO Z Y,et al. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films[J]. Journal of Materials Chemistry,2010,20(41):9032-9036.
[86] LIAN H Q,LI S X,LIU K L,et al. Study on modified graphene/butyl rubber nanocomposites:I preparation and characterization[J]. Polymer Engineering and Science,2011,51(11):2254-2260.
[87] XIONG X G,WANG J Y,JIA H B,et al. Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide[J]. Polymer Degradation and Stability,2013,98(11):2208-2214.
[88] SAURIN N,SANES J,BERMUDEZ M D. Effect of graphene and ionic liquid additives on the tribological performance of epoxy resin[J]. Tribology Letters,2014,56(1):133-142.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[11] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[12] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[13] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[14] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[15] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持