Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 93-100    DOI: 10.11868/j.issn.1001-4381.2016.000599
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制
舒德龙, 田素贵, 梁爽, 张宝帅
沈阳工业大学 材料科学与工程学院, 沈阳 110870
Deformation and Damage Mechanism of a 4.5% Re-containing Nickel-based Single Crystal Superalloy During Creep at 980℃
SHU De-long, TIAN Su-gui, LIANG Shuang, ZHANG Bao-shuai
School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(1040 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过蠕变性能测试和组织形貌观察,研究了一种Re含量为4.5% Re(质量分数,下同)的镍基单晶合金的高温蠕变行为、变形和损伤机制。结果表明,4.5% Re合金在980℃/300MPa的蠕变寿命为169h。蠕变初期,合金中立方γ'相转变为垂直于应力轴的N型筏状结构。稳态蠕变期间,合金的变形机制为位错在基体中滑移和攀移越过筏状γ'相。蠕变后期,合金的变形机制为位错在基体中滑移和剪切进入筏状γ'相。由于γ基体通道较窄,位错在基体通道中滑移所需的阻力较大。剪切进入γ'相的<110>超位错可由{111}面交滑移至{100}面,形成K-W锁,从而抑制位错的滑移和交滑移,这是合金具有较好蠕变抗力的主要原因。主/次滑移位错的交替开动,可致使筏状γ'相扭曲,并促使裂纹在筏状γ/γ'两相界面萌生;裂纹沿垂直于应力轴方向扩展,直至断裂,这是合金的蠕变断裂机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒德龙
田素贵
梁爽
张宝帅
关键词 镍基单晶合金蠕变变形机制K-W锁    
Abstract:By means of creep property measurements and microstructure observations,an investigation has been made into creep behaviors,deformation and damage mechanism of a 4.5%(mass fraction,the same below) Re-containing,nickel-based single crystal superalloy at 980℃.Results show that,under the condition of 980℃/300MPa,the creep life of 4.5% Re alloy is 169h.In the initial stage of creep,the cubical γ'phase in alloy is transformed into the N-type rafted structure perpendicular to the stress axis.During the steady stage creep,the deformation mechanism of the alloy is dislocations slipping in γ matrix and climbing over the rafted γ'phase.In the last stage of creep,the deformation mechanism of alloy is dislocations slipping in γ matrix and shearing into the rafted γ'phase.On the one hand,the γ matrix channels with narrower feature increases the resistance of dislocations slipping;on the other hand,the super-dislocations shearing into the rafted γ'phase may cross-slip from{111}plane to{100}plane to form the dislocation configuration of K-W locks,which may restrain the slipping and cross-slipping of dislocations to improve the creep resistance of alloy.Moreover,the alternate activation of the primary/secondary slipping dislocations results in the twisting of the rafted γ'phase to promote the initiation of the cracks on the γ'/γ interfaces,and as the creep goes on,the cracks propagate along the direction perpendicular to the direction of stress axis,up to creep fracture,which is thought to be the fracture mechanism of the alloy during creep.
Key wordsnickel-based single crystal superalloy    rhenium    creep    deformation mechanism    K-W lock
收稿日期: 2015-12-29      出版日期: 2017-01-19
中图分类号:  TG146.1+5  
通讯作者: 田素贵(1952-),男,教授,博士,从事高温材料组织与性能研究,联系地址:辽宁省沈阳市经济技术开发区沈辽西路111号,沈阳工业大学中央校区(110870),E-mail:tiansugui2003@163.com     E-mail: tiansugui2003@163.com
引用本文:   
舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
SHU De-long, TIAN Su-gui, LIANG Shuang, ZHANG Bao-shuai. Deformation and Damage Mechanism of a 4.5% Re-containing Nickel-based Single Crystal Superalloy During Creep at 980℃. Journal of Materials Engineering, 2017, 45(1): 93-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000599      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/93
[1] 胡壮麒, 刘丽荣, 金涛, 等. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31(3):1-6. HU Z Q, LIU L R, JIN T, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3):1-6.
[2] 陈荣章. 单晶高温合金发展现状[J]. 材料工程, 1995, (8):3-12. CHEN R Z. Development status of single crystal superalloys[J]. Journal of Materials Engineering, 1995, (8):3-12.
[3] GIAMEI A F, ANTON D L. Rhenium additions to a Ni base superalloy:effects on microstructure[J]. Metallurgical and Materials Transactions A, 1985, 16(11):1997-2005.
[4] 孙晓峰, 金涛, 周亦胄, 等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12):1-11. SUN X F, JIN T, ZHOU Y Z, et al. Research progress of nickel-base single crystal superalloys[J]. Materials China, 2012, 31(12):1-11.
[5] MOTTURA A, FINNIS M W, REED R C. On the possibility of rhenium clustering in nickel-base superalloys[J]. Acta Materialia, 2012, 60(6-7):2866-2872.
[6] MOTTURA A, WU R T, FINNIS M W, et al. A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopy[J]. Acta Materialia, 2008, 56(11):2669-2675.
[7] WALTER W M, STEPHEN D A. Yielding and deformation behavior of the single crystal superalloy PWA1480[J]. Metallurgical and Materials Transactions A, 1987:18(1), 85-95.
[8] FINN D A. Theory of deformation in superlattices[J]. Transactions of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960, 215:145-154.
[9] TIAN S G, WU J, SHU D L, et al. Influence of element Re on deformation mechanism within γ' phase of single crystal nickel-based superalloys during creep at elevated temperatures[J]. Materials Science and Engineering:A, 2014, 616:260-267.
[10] KOSTKA A, MÄLZER G, EGGELER G, et al. L12-phase cutting during high temperature and low stress creep of a Re-containing Ni-base single crystal superalloy[J]. Journal of Materials Science, 2007, 42(11):3951-3957.
[11] 彭志方, 任逍遥, 樊宝珍, 等. 镍基单晶高温合金γ'的定向粗化机理[J]. 金属学报, 1999, 35(1):9-14. PENG Z F, REN X Y, FAN B Z, et al. A mechanism for directional coarsening of γ' precipitates in single crystal nickel-base superalloys[J]. Acta Metallurgica Sinica, 1999, 35(1):9-14.
[12] YEH A C, SATO A, KOBAYASHI T, et al. On the creep and phase stability of Ni-base single crystal superalloys[J]. Materials Science and Engineering:A, 2008, 490:445-451.
[13] 于兴福. 一种无铼镍基单晶合金的蠕变行为及影响因素[D]. 沈阳:沈阳工业大学, 2008. YU X F. Behaviors and effect factors of a Re-free single crystal Ni-based superalloy during creep[D]. Shenyang:Shenyang University of Technology, 2008.
[14] 田素贵, 舒德龙, 曾征, 等. 一种4.5%Re单晶镍基合金的中温蠕变行为[J]. 材料热处理学报, 2012, 33(10):55-61. TIAN S G, SHU D L, ZENG Z, et al. Creep behavior of a single crystal nickel-base superalloy containing 4.5% Re at medium temperature[J]. Transactions of Materials and Heat Treatment, 2012, 33(10):55-61.
[15] 张丽辉, 唐定中, 曹雪刚. 单晶高温合金损伤与断裂特性研究[J]. 失效分析与预防, 2012, 7(3):148-152. ZHANG L H, TANG D Z, CAO X G. Damage and fracture characteristics of single crystal superalloy[J]. Failure Analysis and Prevention, 2012, 7(3):148-152.
[16] VITEK V. Atomic structure of dislocations in intermetallics with close packed structures:a comparative study[J]. Intermetallics, 1998, 6(7):579-585.
[17] 刘丽荣, 金涛, 赵乃仁, 等. 一种Ni基单晶高温合金
[001] 方向的持久性能与断裂行为[J]. 金属学报, 2004, 40(8):858-862. LIU L R, JIN T, ZHAO N R, et al. Stress rupture properties and fracture behavior of a Ni base single crystal superalloy along
[001] direction[J]. Acta Metallurgica Sinica, 2004, 40(8):858-862.
[18] ZHANG J X, HARADA H, KOIZUMI Y, et al. Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit[J]. Journal of Materials Science, 2010, 45(45):523-532.
[19] CARRY C, STRUDEL J L. Apparent and effective creep parameters in single crystals of a nickel base superalloy-I Incubation period[J]. Acta Metallurgica, 1977, 25(7):767-777.
[20] TIAN S G, SU Y, QIAN B J, et al. Creep behavior of a single crystal nickel-based superalloy containing 4.2%Re[J]. Materials & Design, 2012, 37(1):236-242.
[21] JOHNSON W R, BARRETT C R, NIX W D, et al. Discussion of the effect of environment and grain size on the creep behavior of a Ni-6 pct W solid solution[J]. Metallurgical Transformation, 1972,3(12):695-698.
[22] KEAR B H. Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys[J]. Transactions of the Metallurgical Society of AIME, 1961, 224(2):382-386.
[23] MUKHERJEE A K, BIRD J E, DORN J E. Cones and vietoris-begle type theorems[J]. Transactions of the American Society of Metals, 1969, 62:155-174.
[24] HEMKER K J, MILLS M J, NIX W D. An investigation of the mechanisms that control intermediate temperature creep of Ni3Al[J]. Acta Metallurgica et Materialia, 1991, 39(8):1901-1913.
[25] RONG T S, JONES I P, SMALLMAN R E. Dislocation mechanisms in creep of Ni3Al at intermediate temperature[J]. Acta Metallurgica et Materialia, 1995, 43(43):1385-1393.
[26] 李嘉荣, 史振学, 袁海龙,等. 单晶高温合金DD6拉伸性能各向异性[J]. 材料工程, 2008, (12):6-10. LI J R, SHI Z X, YUAN H L, et al. Tensile anisotropy of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2008, (12):6-10.
[1] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[2] 李会芳, 赵杰, 程从前, 闵小华, 曹铁山, 许军. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法[J]. 材料工程, 2018, 46(3): 112-116.
[3] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[4] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[5] 崔璐, 石红梅, 张涛, 王澎, 李臻. 热交变载荷下10% Cr耐热钢蠕变疲劳裂纹萌生特征[J]. 材料工程, 2017, 45(9): 143-148.
[6] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[7] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[8] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[9] 张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
[10] 舒德龙, 田素贵, 吴静, 张宝帅, 梁爽. 一种含4.5%Re/3.0%Ru的单晶镍基合金的高温蠕变行为[J]. 材料工程, 2017, 45(3): 41-46.
[11] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[12] 陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
[13] 李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
[14] 王岚, 王宇, 邢永明, 胡江三. 短期老化对橡胶粉改性沥青流变性能的影响[J]. 材料工程, 2016, 44(1): 54-59.
[15] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn