Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.000751
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨法制备锂离子液流电池石墨负极浆料的性能研究
冯彩梅1,2, 巩宇1,2, 陈永翀1,*(), 刘丹丹1, 张萍3
1 中国科学院电工研究所 储能技术研究组, 北京 100190
2 中国科学院大学, 北京 100049
3 北京好风光储能技术 有限公司, 北京 100085
Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling
Cai-mei FENG1,2, Yu GONG1,2, Yong-chong CHEN1,*(), Dan-dan LIU1, Ping ZHANG3
1 Energy Storage Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Hawaga Power Storage Technology Company Ltd., Beijing 100085, China
全文: PDF(3959 KB)   HTML ( 25 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用球磨法制备锂离子液流电池所用的石墨负极浆料,并对石墨负极浆料的颗粒形貌、电导率、比容量性能及循环性能进行研究。结果表明:导电添加剂的加入有助于提高电极浆料的悬浮稳定性;球磨过程可以降低石墨和导电添加剂混合粉体的电阻率,球料比达到5:1时即可实现较好的球磨效果,但球料比不宜过高,否则会造成石墨材料层状结构的破坏,影响电极浆料性能的稳定性。提高石墨和导电添加剂的含量可以在电极浆料中形成稳定的导电网络结构,使可逆比容量提高;在保证电极浆料可流动的情况下,可逆比容量可大于40mAh/g。石墨负极浆料的容量损失主要发生在首次充放电过程中,随着循环次数的增加,容量损耗的速率降低,第5次循环以后容量趋于稳定。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯彩梅
巩宇
陈永翀
刘丹丹
张萍
关键词 锂离子液流电池石墨负极浆料球磨    
Abstract

Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

Key wordslithium-ion flow battery    graphite    anode slurry    ball milling
收稿日期: 2016-06-20      出版日期: 2018-02-01
中图分类号:  TM912.9  
基金资助:国家自然科学基金项目(51477170);北京市科技计划项目(Z161100000416001)
通讯作者: 陈永翀     E-mail: ycchen@mail.iee.ac.cn
作者简介: 陈永翀(1975-), 男, 教授, 研究方向为储能技术, 联系地址:北京市海淀区中关村北二条6号中国科学院电工研究所储能技术研究组(100190), E-mail: ycchen@mail.iee.ac.cn
引用本文:   
冯彩梅, 巩宇, 陈永翀, 刘丹丹, 张萍. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8.
Cai-mei FENG, Yu GONG, Yong-chong CHEN, Dan-dan LIU, Ping ZHANG. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling. Journal of Materials Engineering, 2018, 46(2): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000751      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/1
Fig.1  不同导电添加剂材料含量的浆料沉降体积随时间的变化
Fig.2  颗粒形貌图 (a)石墨颗粒;(b)导电添加剂
Fig.3  石墨浆料静置2天后的实物图 (a)搅拌法;(b)球磨法
Fig.4  不同球料比制备浆料中颗粒的SEM图 (a)2:1;(b)5:1;(c)10:1;(d)15:1;(e)20:1
Material Ratio of grinding media to material Electrical resistivity/(mΩ·cm)
Graphite powder 30.50
Conductive additive powder 132.00
Mixed powder 2:1 14.54
Mixed powder 5:1 14.09
Mixed powder 10:1 13.93-14.08
Mixed powder 15:1 13.75-15.45
Mixed powder 20:1 13.66-14.39
Table 1  不同球料比制备粉体材料的电导率
Fig.5  导电添加剂在石墨颗粒之间形成的桥联结构
Fig.6  不同球料比制备电极材料的放电比容量
Fig.7  石墨负极浆料充放电测试结果 (a)石墨3%,导电剂0.3%;(b)石墨15%,导电剂0.6%
Fig.8  不同配比石墨负极浆料的可逆比容量
Fig.9  石墨负极浆料循环性能测试
1 陈永翀, 武明晓, 任雅琨, 等. 锂离子液流电池的研究进展[J]. 电工电能新技术, 2012, 31 (3): 81- 85.
1 CHEN Y C , WU M H , REN Y K , et al. Research progress in lithium ion flow battery[J]. Advanced Technology of Electrical Engineering and Energy, 2012, 31 (3): 81- 85.
2 CHIANG Y M, CARTER W C, HO B Y, et al. Fuel system using redox flow battery: WO2009151639A1[P]. 2009-06-12.
3 CHIANG Y M, BAZZARELLA R. Fuel system using redox flow battery: US20100323264A1[P]. 2010-04-06.
4 SLOCUM A H, BAZZARELLA R, CHIANG Y M, et al. Stacked flow cell design and method: US20140004437A1[P]. 2012-06-21.
5 CHIANG Y M, CARTER W C, DUDUTA M, et al. High energy density redox flow device: US008722226B2[P]. 2014-05-13.
6 DUDUTA M , HO B , WOOD V C , et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1 (4): 511- 516.
doi: 10.1002/aenm.201100152
7 BRUNINI V E , CHIANG Y M , CARTER W C . Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries[J]. Electrochimica Acta, 2012, 69, 301- 307.
doi: 10.1016/j.electacta.2012.03.006
8 SMITH M C , CHIANG Y M , CARTER W C . Maximizing energetic efficiency in flow batteries utilizing non-newtonian fluids[J]. Journal of the Electrochemical Society, 2014, 161 (4): A486- A496.
doi: 10.1149/2.011404jes
9 SMITH K C , BRUNINI V E , DONG Y J , et al. Electroactive-zone extension in flow-battery stacks[J]. Electrochimica Acta, 2014, 147, 460- 469.
doi: 10.1016/j.electacta.2014.09.108
10 WEI T S , FAN F Y , HELAL A , et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow[J]. Advanced Energy Materials, 2015, 5, 1500535.
doi: 10.1002/aenm.201500535
11 LI Z , SMITH K C , DONG Y J , et al. Aqueous semi-solid flow cell:demonstration and analysis[J]. Physical Chemistry Chemical Physics, 2013, 15 (38): 15833- 15844.
doi: 10.1039/c3cp53428f
12 HAMELET S , TZEDAKIS T , LERICHE J B , et al. Non-aqueous Li-based redox flow batteries[J]. Journal of the Electrochemical Society, 2012, 159 (8): A1360- A1367.
doi: 10.1149/2.071208jes
13 HAMELET S , LARCHER D , DUPONT L , et al. Silicon-based non aqueous anolyte for Li redox-flow batteries[J]. Journal of the Electrochemical Society, 2013, 160 (3): A516- A520.
doi: 10.1149/2.002304jes
14 YOUSSRY M , MADEC L , SOUDAN P , et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries:Rheology and simultaneous rheo-electrical behavior[J]. Physical Chemistry Chemical Physics, 2013, 15, 14476- 14486.
doi: 10.1039/c3cp51371h
15 MADEC L , YOUSSRY M , CERBELAUD M , et al. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161 (5): A693- A699.
doi: 10.1149/2.035405jes
16 MADEC L , YOUSSRY M , CERBELAUD M , et al. Surfactant for enhanced rheological, electrical, and electrochemical performance of suspensions for semisolid redox flow batteries and supercapacitors[J]. Chem Plus Chem, 2015, 80 (2): 396- 403.
17 刘鑫. 半固态液流电池性能的数值模拟研究[D]. 长春: 吉林大学, 2014.
17 LIU X. Numerical simulation study on semi-solid flow batter[D]. Changchun: Jilin University, 2014.
18 谢海明, 杜继平, 朱科宇. 半固体流锂离子电池: CN102447132A[P]. 2011-10-24.
18 XIE H M, DU J P, ZHU K Y. Semi-solid flow lithium ion battery: CN102447132A[P]. 2011-10-24.
19 崔光磊, 王晓刚, 董杉木, 等. 锂金属液流电池系统及其制备方法: CN 102637890A[P]. 2012-03-30.
19 CUI G L, WANG X G, DONG S M, et al. Lithium flow battery system and preparation method: CN 102637890A[P]. 2012-03-30.
20 耿世达, 陈杨英. 一种复合集电体的制备及其在锂离子液流电池中的应用: CN102315454A[P]. 2011-08-02.
20 GENG S D, CHEN Y Y. Preparation of composite current collector and its application in lithium ion flow battery: CN102315454A[P]. 2011-08-02.
21 刘现营. 锂离子液流电池的液流泵间歇工作自动控制器: CN103985893A[P]. 2014-06-01.
21 LIU X Y. Fluid-flow pump intermittent work automatic controller of lithium ion flow battery: CN103985893A[P]. 2014-06-01.
22 任雅琨. 逾渗理论在混合电解质溶液中的应用[D]. 北京: 中国科学院电工研究所/北京航空航天大学, 2011.
22 REN Y K. Application of percolation theory in the mixed electrolyte solution[D]. Beijing: Institute of Electrical Engineering, CAS/Beihang University, 2011.
23 任雅琨, 陈永翀, 冯彩梅, 等. 锂离子液流电池电极悬浮液的电子导电性建模及仿真[J]. 现代科学仪器, 2014, (3): 84- 89.
23 REN Y K , CHEN Y C , FENG C M , et al. Electronic conductivity model and simulation of electrode suspension of lithium-ion flow battery[J]. Modern Scientific Instruments, 2014, (3): 84- 89.
24 任雅琨. 锂离子液流电池电化学模型的初步研究[D]. 北京: 中国科学院电工研究所, 2014.
24 REN Y K. A preliminary study on electrochemical model of lithium-ion flow battery[D]. Beijing: Institute of Electrical Engineering, CAS, 2014.
25 冯彩梅, 陈永翀, 韩立, 等. 锂离子液流电池电极悬浮液研究进展[J]. 储能科学与技术, 2015, 4 (3): 241- 247.
25 FENG C M , CHEN Y C , HAN L , et al. Research progress of electrode suspension of lithium-ion flow batteries[J]. Energy Storage Science and Technology, 2015, 4 (3): 241- 247.
26 陈永翀, 武明晓, 冯彩梅, 等. 一种无泵锂离子液流电池及其电极悬浮液的配置方法: CN102664280A[P]. 2012-05-10.
26 CHEN Y C, WU M X, FENG C M, et al. Lithium ion flow battery without pump and configuration method of the electrode suspension: CN102664280A[P]. 2012-05-10.
27 陈永翀, 王秋平, 张萍, 等. 一种锂离子液流电池: CN202259549U[P]. 2011-06-28.
27 CHEN Y C, WANG Q P, ZHANG P, et al. A kind of lithium ion flow battery: CN202259549U[P]. 2011-06-28.
28 陈永翀, 张艳萍, 冯彩梅, 等. 一种锂液流电池反应器及电极悬浮液嵌锂合成方法: CN 103117406A[P]. 2013-01-31.
28 CHEN Y C, ZHANG Y P, FENG C M, et al. A kind of lithium flow battery and Li ion intercalation synthesis method of electrode suspension: CN 103117406A[P]. 2013-01-31.
29 陈永翀, 张艳萍, 冯彩梅, 等. 一种锂离子液流电池反应器: CN102945978A[P]. 2012-11-07.
29 CHEN Y C, ZHANG Y P, FENG C M, et al. A kind of lithium ion flow battery reactor: CN102945978A[P]. 2012-11-07.
30 孟波, 孟良荣, 孙丰霞, 等. 离子体表面处理法改进锂离子电池碳负极性能[J]. 电池工业, 2013, 18 (5): 233- 235.
30 MENG B , MENG L R , SUN F X , et al. Improvement of the properties of natural graphite negative electrode for Li-ion batteries by plasma surface treatmeat[J]. Chinese Battery Industry, 2013, 18 (5): 233- 235.
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[3] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[4] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[5] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[6] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[7] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[8] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[9] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[10] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[11] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[12] 雷铭, 刘岳林, 谢水波, 葛玉杰, 刘迎九. ZnO/g-C3N4复合光催化剂的制备及光催化还原U (Ⅵ)[J]. 材料工程, 2022, 50(10): 157-164.
[13] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[14] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[15] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn