Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.000751
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球磨法制备锂离子液流电池石墨负极浆料的性能研究
冯彩梅1,2, 巩宇1,2, 陈永翀1, 刘丹丹1, 张萍3
1. 中国科学院电工研究所 储能技术研究组, 北京 100190;
2. 中国科学院大学, 北京 100049;
3. 北京好风光储能技术 有限公司, 北京 100085
Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling
FENG Cai-mei1,2, GONG Yu1,2, CHEN Yong-chong1, LIU Dan-dan1, ZHANG Ping3
1. Energy Storage Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Beijing Hawaga Power Storage Technology Company Ltd., Beijing 100085, China
全文: PDF(3959 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用球磨法制备锂离子液流电池所用的石墨负极浆料,并对石墨负极浆料的颗粒形貌、电导率、比容量性能及循环性能进行研究。结果表明:导电添加剂的加入有助于提高电极浆料的悬浮稳定性;球磨过程可以降低石墨和导电添加剂混合粉体的电阻率,球料比达到5:1时即可实现较好的球磨效果,但球料比不宜过高,否则会造成石墨材料层状结构的破坏,影响电极浆料性能的稳定性。提高石墨和导电添加剂的含量可以在电极浆料中形成稳定的导电网络结构,使可逆比容量提高;在保证电极浆料可流动的情况下,可逆比容量可大于40mAh/g。石墨负极浆料的容量损失主要发生在首次充放电过程中,随着循环次数的增加,容量损耗的速率降低,第5次循环以后容量趋于稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯彩梅
巩宇
陈永翀
刘丹丹
张萍
关键词 锂离子液流电池石墨负极浆料球磨    
Abstract:Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.
Key wordslithium-ion flow battery    graphite    anode slurry    ball milling
收稿日期: 2016-06-20      出版日期: 2018-02-01
中图分类号:  TM912.9  
通讯作者: 陈永翀(1975-),男,教授,研究方向为储能技术,联系地址:北京市海淀区中关村北二条6号中国科学院电工研究所储能技术研究组(100190),ycchen@mail.iee.ac.cn     E-mail: ycchen@mail.iee.ac.cn
引用本文:   
冯彩梅, 巩宇, 陈永翀, 刘丹丹, 张萍. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8.
FENG Cai-mei, GONG Yu, CHEN Yong-chong, LIU Dan-dan, ZHANG Ping. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling. Journal of Materials Engineering, 2018, 46(2): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000751      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/1
[1] 陈永翀,武明晓,任雅琨,等. 锂离子液流电池的研究进展[J]. 电工电能新技术,2012,31(3):81-85. CHEN Y C, WU M H, REN Y K, et al. Research progress in lithium ion flow battery[J]. Advanced Technology of Electrical Engineering and Energy, 2012, 31(3):81-85.
[2] CHIANG Y M, CARTER W C, HO B Y, et al. Fuel system using redox flow battery:WO2009151639A1[P].2009-06-12.
[3] CHIANG Y M, BAZZARELLA R. Fuel system using redox flow battery:US20100323264A1[P]. 2010-04-06.
[4] SLOCUM A H, BAZZARELLA R, CHIANG Y M, et al. Stacked flow cell design and method:US20140004437A1[P]. 2012-06-21.
[5] CHIANG Y M, CARTER W C, DUDUTA M, et al. High energy density redox flow device:US008722226B2[P]. 2014-05-13.
[6] DUDUTA M, HO B, WOOD V C, et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1(4):511-516.
[7] BRUNINI V E, CHIANG Y M, CARTER W C. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries[J]. Electrochimica Acta, 2012, 69:301-307.
[8] SMITH M C, CHIANG Y M, CARTER W C. Maximizing energetic efficiency in flow batteries utilizing non-newtonian fluids[J]. Journal of the Electrochemical Society, 2014, 161(4):A486-A496.
[9] SMITH K C, BRUNINI V E, DONG Y J, et al. Electroactive-zone extension in flow-battery stacks[J]. Electrochimica Acta, 2014, 147:460-469.
[10] WEI T S, FAN F Y, HELAL A, et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow[J]. Advanced Energy Materials, 2015, 5:1500535.
[11] LI Z, SMITH K C, DONG Y J, et al. Aqueous semi-solid flow cell:demonstration and analysis[J]. Physical Chemistry Chemical Physics, 2013, 15(38):15833-15844.
[12] HAMELET S, TZEDAKIS T, LERICHE J B, et al. Non-aqueous Li-based redox flow batteries[J]. Journal of the Electrochemical Society, 2012, 159(8):A1360-A1367.
[13] HAMELET S, LARCHER D, DUPONT L, et al. Silicon-based non aqueous anolyte for Li redox-flow batteries[J]. Journal of the Electrochemical Society, 2013, 160(3):A516-A520.
[14] YOUSSRY M, MADEC L, SOUDAN P, et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries:Rheology and simultaneous rheo-electrical behavior[J]. Physical Chemistry Chemical Physics, 2013, 15:14476-14486.
[15] MADEC L, YOUSSRY M, CERBELAUD M, et al. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161(5):A693-A699.
[16] MADEC L, YOUSSRY M, CERBELAUD M, et al. Surfactant for enhanced rheological, electrical, and electrochemical performance of suspensions for semisolid redox flow batteries and supercapacitors[J]. Chem Plus Chem, 2015, 80(2):396-403.
[17] 刘鑫.半固态液流电池性能的数值模拟研究[D].长春:吉林大学,2014. LIU X. Numerical simulation study on semi-solid flow batter[D]. Changchun:Jilin University, 2014.
[18] 谢海明,杜继平,朱科宇.半固体流锂离子电池:CN102447132A[P].2011-10-24. XIE H M, DU J P, ZHU K Y. Semi-solid flow lithium ion battery:CN102447132A[P]. 2011-10-24.
[19] 崔光磊,王晓刚,董杉木,等.锂金属液流电池系统及其制备方法:CN 102637890A[P]. 2012-03-30. CUI G L, WANG X G, DONG S M, et al. Lithium flow battery system and preparation method:CN 102637890A[P].2012-03-30.
[20] 耿世达,陈杨英.一种复合集电体的制备及其在锂离子液流电池中的应用:CN102315454A[P]. 2011-08-02. GENG S D, CHEN Y Y. Preparation of composite current collector and its application in lithium ion flow battery:CN102315454A[P]. 2011-08-02.
[21] 刘现营.锂离子液流电池的液流泵间歇工作自动控制器:CN103985893A[P]. 2014-06-01. LIU X Y. Fluid-flow pump intermittent work automatic controller of lithium ion flow battery:CN103985893A[P]. 2014-06-01.
[22] 任雅琨.逾渗理论在混合电解质溶液中的应用[D].北京:中国科学院电工研究所/北京航空航天大学,2011. REN Y K. Application of percolation theory in the mixed electrolyte solution[D]. Beijing:Institute of Electrical Engineering, CAS/Beihang University, 2011.
[23] 任雅琨,陈永翀,冯彩梅,等.锂离子液流电池电极悬浮液的电子导电性建模及仿真[J]. 现代科学仪器,2014(3):84-89. REN Y K, CHEN Y C, FENG C M, et al. Electronic conductivity model and simulation of electrode suspension of lithium-ion flow battery[J]. Modern Scientific Instruments,2014(3):84-89.
[24] 任雅琨. 锂离子液流电池电化学模型的初步研究[D].北京:中国科学院电工研究所,2014. REN Y K. A preliminary study on electrochemical model of lithium-ion flow battery[D]. Beijing:Institute of Electrical Engineering, CAS, 2014.
[25] 冯彩梅,陈永翀,韩立,等.锂离子液流电池电极悬浮液研究进展[J].储能科学与技术,2015,4(3):241-247. FENG C M, CHEN Y C, HAN L, et al. Research progress of electrode suspension of lithium-ion flow batteries[J]. Energy Storage Science and Technology, 2015,4(3):241-247.
[26] 陈永翀,武明晓,冯彩梅,等.一种无泵锂离子液流电池及其电极悬浮液的配置方法:CN102664280A[P].2012-05-10. CHEN Y C, WU M X, FENG C M, et al. Lithium ion flow battery without pump and configuration method of the electrode suspension:CN102664280A[P].2012-05-10.
[27] 陈永翀,王秋平,张萍,等.一种锂离子液流电池:CN202259549U[P].2011-06-28. CHEN Y C, WANG Q P, ZHANG P, et al. A kind of lithium ion flow battery:CN202259549U[P].2011-06-28.
[28] 陈永翀,张艳萍,冯彩梅,等.一种锂液流电池反应器及电极悬浮液嵌锂合成方法:CN 103117406A[P]. 2013-01-31. CHEN Y C, ZHANG Y P, FENG C M, et al. A kind of lithium flow battery and Li ion intercalation synthesis method of electrode suspension:CN 103117406A[P]. 2013-01-31.
[29] 陈永翀,张艳萍,冯彩梅,等.一种锂离子液流电池反应器:CN102945978A[P]. 2012-11-07. CHEN Y C, ZHANG Y P, FENG C M, et al. A kind of lithium ion flow battery reactor:CN102945978A[P]. 2012-11-07.
[30] 孟波,孟良荣,孙丰霞,等.离子体表面处理法改进锂离子电池碳负极性能[J].电池工业,2013,18(5):233-235. MENG B, MENG L R, SUN F X, et al. Improvement of the properties of natural graphite negative electrode for Li-ion batteries by plasma surface treatmeat[J]. Chinese Battery Industry, 2013, 18(5):233-235.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[9] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[10] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[11] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[12] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[13] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[14] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[15] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn