1 Energy Storage Technology Research Group, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Beijing Hawaga Power Storage Technology Company Ltd., Beijing 100085, China
Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.
CHEN Y C , WU M H , REN Y K , et al. Research progress in lithium ion flow battery[J]. Advanced Technology of Electrical Engineering and Energy, 2012, 31 (3): 81- 85.
2
CHIANG Y M, CARTER W C, HO B Y, et al. Fuel system using redox flow battery: WO2009151639A1[P]. 2009-06-12.
3
CHIANG Y M, BAZZARELLA R. Fuel system using redox flow battery: US20100323264A1[P]. 2010-04-06.
4
SLOCUM A H, BAZZARELLA R, CHIANG Y M, et al. Stacked flow cell design and method: US20140004437A1[P]. 2012-06-21.
5
CHIANG Y M, CARTER W C, DUDUTA M, et al. High energy density redox flow device: US008722226B2[P]. 2014-05-13.
6
DUDUTA M , HO B , WOOD V C , et al. Semi-solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1 (4): 511- 516.
doi: 10.1002/aenm.201100152
7
BRUNINI V E , CHIANG Y M , CARTER W C . Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries[J]. Electrochimica Acta, 2012, 69, 301- 307.
doi: 10.1016/j.electacta.2012.03.006
8
SMITH M C , CHIANG Y M , CARTER W C . Maximizing energetic efficiency in flow batteries utilizing non-newtonian fluids[J]. Journal of the Electrochemical Society, 2014, 161 (4): A486- A496.
doi: 10.1149/2.011404jes
9
SMITH K C , BRUNINI V E , DONG Y J , et al. Electroactive-zone extension in flow-battery stacks[J]. Electrochimica Acta, 2014, 147, 460- 469.
doi: 10.1016/j.electacta.2014.09.108
10
WEI T S , FAN F Y , HELAL A , et al. Biphasic electrode suspensions for Li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow[J]. Advanced Energy Materials, 2015, 5, 1500535.
doi: 10.1002/aenm.201500535
11
LI Z , SMITH K C , DONG Y J , et al. Aqueous semi-solid flow cell:demonstration and analysis[J]. Physical Chemistry Chemical Physics, 2013, 15 (38): 15833- 15844.
doi: 10.1039/c3cp53428f
12
HAMELET S , TZEDAKIS T , LERICHE J B , et al. Non-aqueous Li-based redox flow batteries[J]. Journal of the Electrochemical Society, 2012, 159 (8): A1360- A1367.
doi: 10.1149/2.071208jes
13
HAMELET S , LARCHER D , DUPONT L , et al. Silicon-based non aqueous anolyte for Li redox-flow batteries[J]. Journal of the Electrochemical Society, 2013, 160 (3): A516- A520.
doi: 10.1149/2.002304jes
14
YOUSSRY M , MADEC L , SOUDAN P , et al. Non-aqueous carbon black suspensions for lithium-based redox flow batteries:Rheology and simultaneous rheo-electrical behavior[J]. Physical Chemistry Chemical Physics, 2013, 15, 14476- 14486.
doi: 10.1039/c3cp51371h
15
MADEC L , YOUSSRY M , CERBELAUD M , et al. Electronic vs ionic limitations to electrochemical performance in Li4Ti5O12-based organic suspensions for lithium-redox flow batteries[J]. Journal of the Electrochemical Society, 2014, 161 (5): A693- A699.
doi: 10.1149/2.035405jes
16
MADEC L , YOUSSRY M , CERBELAUD M , et al. Surfactant for enhanced rheological, electrical, and electrochemical performance of suspensions for semisolid redox flow batteries and supercapacitors[J]. Chem Plus Chem, 2015, 80 (2): 396- 403.
17
刘鑫. 半固态液流电池性能的数值模拟研究[D]. 长春: 吉林大学, 2014.
17
LIU X. Numerical simulation study on semi-solid flow batter[D]. Changchun: Jilin University, 2014.
REN Y K. Application of percolation theory in the mixed electrolyte solution[D]. Beijing: Institute of Electrical Engineering, CAS/Beihang University, 2011.
REN Y K , CHEN Y C , FENG C M , et al. Electronic conductivity model and simulation of electrode suspension of lithium-ion flow battery[J]. Modern Scientific Instruments, 2014, (3): 84- 89.
24
任雅琨. 锂离子液流电池电化学模型的初步研究[D]. 北京: 中国科学院电工研究所, 2014.
24
REN Y K. A preliminary study on electrochemical model of lithium-ion flow battery[D]. Beijing: Institute of Electrical Engineering, CAS, 2014.
FENG C M , CHEN Y C , HAN L , et al. Research progress of electrode suspension of lithium-ion flow batteries[J]. Energy Storage Science and Technology, 2015, 4 (3): 241- 247.
CHEN Y C, WU M X, FENG C M, et al. Lithium ion flow battery without pump and configuration method of the electrode suspension: CN102664280A[P]. 2012-05-10.
CHEN Y C, ZHANG Y P, FENG C M, et al. A kind of lithium flow battery and Li ion intercalation synthesis method of electrode suspension: CN 103117406A[P]. 2013-01-31.
MENG B , MENG L R , SUN F X , et al. Improvement of the properties of natural graphite negative electrode for Li-ion batteries by plasma surface treatmeat[J]. Chinese Battery Industry, 2013, 18 (5): 233- 235.