Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 14-19    DOI: 10.11868/j.issn.1001-4381.2016.000759
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型Al-Zn-Mg-Cu合金热变形组织演化
张坤1, 臧金鑫1,2, 陈军洲1,2, 伊琳娜1,2, 汝继刚1,2, 康唯3
1. 北京航空材料研究院, 北京 100095;
2. 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095;
3. 中国商飞 质量适航部, 上海 200126
Microstructure Evolution of New Al-Zn-Mg-Cu Alloy During Hot Deformation
ZHANG Kun1, ZANG Jin-xin1,2, CHEN Jun-zhou1,2, YI Lin-na1,2, RU Ji-gang1,2, KANG Wei3
1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China;
3. Quality and Airworthiness Department, Commercial Aircraft Corporation of China, Ltd., Shanghai 200126, China
全文: PDF(1163 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Gleeble-1500D热力模拟试验机研究新型Al-Zn-Mg-Cu高强铝合金在变形温度为300~450℃,应变速率为0.001~10s-1条件下的热变形组织演化。利用光学显微镜(OM)和透射电子显微镜(TEM)观察合金不同热变形条件下的组织形貌特征。结果表明:随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大;合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶。变形温度为300~400℃时,主要发生动态回复;变形温度为450℃,应变速率为0.001~10s-1时,软化机制以动态再结晶为主,存在晶界弓出、亚晶长大、亚晶合并3种再结晶形核机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张坤
臧金鑫
陈军洲
伊琳娜
汝继刚
康唯
关键词 Al-Zn-Mg-Cu高强铝合金热压缩变形微观组织动态回复动态再结晶    
Abstract:Microstructure evolution during hot deformation of a new Al-Zn-Mg-Cu alloy was investigated by Gleeble-1500D thermal-mechanical simulator at 300-450℃ and strain rate of 0.001-10s-1.The microstructure features at different hot deformation conditions were analyzed with optical microscope (OM) and transmission electron microscope (TEM).The results show that the dislocation density decreases and the subgrain sizes increase with the increase of deformation temperature and the decrease of the strain rate;the main softening mechanism of the alloy is dynamic recovery and dynamic recrystallization.Only dynamic recovery occurs when the temperature is 300-400℃.Dynamic recrystallization occurs when the strain rate is 0.001-10s-1 at 450℃.The nucleation mechanism is grain boundary bowing,subgrain growing and subgrain incorporation during dynamic recrystallization.
Key wordsAl-Zn-Mg-Cu high strength alloy    hot compression deformation    microstructure    dynamic recovery    dynamic recrystallization
收稿日期: 2016-06-22      出版日期: 2017-01-19
中图分类号:  TG146.2+1  
  TG319  
通讯作者: 张坤(1976-),女,工学博士,高级工程师,研究方向:铝合金及其复合材料研发与应用研究,联系地址:北京市81信箱2分箱(100095),E-mail:zhk76x@sina.com     E-mail: zhk76x@sina.com
引用本文:   
张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
ZHANG Kun, ZANG Jin-xin, CHEN Jun-zhou, YI Lin-na, RU Ji-gang, KANG Wei. Microstructure Evolution of New Al-Zn-Mg-Cu Alloy During Hot Deformation. Journal of Materials Engineering, 2017, 45(1): 14-19.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000759      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/14
[1] 丛福官,赵刚,田妮,等.7×××系超高强铝合金的强韧化研究进展及发展趋势[J].轻合金加工技术,2012,40(10):23-33. CONG F G,ZHAO G,TIAN N,et al. Research progress and development trend of strengthening-toughening of ultra-high strength 7×××aluminum alloy[J]. Light Alloy Fabrication Technology, 2012, 40(10):23-33.
[2] CASSADA W, LIU J, STALEY J. Aluminum alloys for aircraft structures[J]. Advanced Materials & Processes, 2002, 160(12):27-35.
[3] YANG Q Y, DENG Z H, ZHANG Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation[J]. Materials Science & Engineering:A,2016,662:204-213.
[4] LIN Y C, LI L T, XIA Y C, et al. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy[J]. Journal of Alloys & Compounds, 2013, 550(6):438-445.
[5] ZHANG H, JIN N P, CHEN J H. Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):437-442.
[6] McQUEEN H J. Development of dynamic recrystallization theory[J]. Materials Science & Engineering:A, 2004, 387-389(1):203-208.
[7] KAIBYSHEV R, MAZURINA I,SITDIKOV O. Geometric dynamic recrystallization in an AA2219 alloy deformed to large strains at an elevated temperature[J]. Materials Science Forum, 2004, 467-470:1199-1204.
[8] ZHOU M, LIN Y C,DENG J, et al. Hot tension deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J]. Materials & Design,2014,59(6):141-150.
[9] SERAJZADEH S.Modeling flow stress behavior of aluminum alloys during hot rolling[J].Materials Science & Technology, 2006,22(6):713-718.
[10] 沈健,唐京辉,谢水生.Al-Zn-Mg合金的热变形组织演化[J].金属学报,2000,36(10):1033-1036. SHEN J,TANG J H,XIE S S.Microstructure evolution of Al-Zn-Mg alloy during hot deformation[J]. Acta Metallurgica Sinica, 2000, 36(10):1033-1036.
[11] 李慧中,梁霄鹏,张新明,等.2519铝合金热变形组织演化[J].中国有色金属学报,2008,18(2):226-230. LI H Z, LIANG X P, ZHANG X M, et al. Microstructure evolution of 2519 alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2008,18(2):226-230.
[12] 黄裕金,陈志国,舒军,等.2E12铝合金的高温塑性变形流变应力行为[J].中国有色金属学报,2010,20(11):2094-2097. HUANG Y J, CHEN Z G, SHU J, et al. Flow stress behavior of 2E12 aluminum alloy during hot plastic deformation at high temperature[J].The Chinese Journal of Nonferrous Metals, 2010,20(11):2094-2097.
[13] STARKE E A, STALEY J T.Application of modern aluminum alloys to aircraft[J]. Progress in Aerospace Sciences,1996, 32(2-3):131-172.
[14] 杨胜利,沈健,闫晓东,等.Al-Cu-Li-Mg-Mn-Zn-Ag合金的热变形流变行为与本构方程[J].中国有色金属学报,2015,25(8):2083-2090. YANG S L, SHEN J, YAN X D,et al. Flow behavior and constitutive equations of Al-Cu-Li-Mg-Mn-Zn-Ag alloy during isothermal compression[J].The Chinese Journal of Nonferrous Metals, 2015,25(8):2083-2090.
[15] HU H E,ZHEN L,YANG L,et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation[J]. Materials Science & Engineering:A,2008,488(1-2):64-71.
[1] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[2] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[5] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[6] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[7] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[8] 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
[9] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[10] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[11] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[12] 樊振中, 万佟, 王端志, 王鲲鹏, 王胜强, 贺笃鹏. ZL114A合金冷态焊接微观组织与力学性能[J]. 材料工程, 2018, 46(6): 57-64.
[13] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[14] 屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
[15] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn