Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 41-49    DOI: 10.11868/j.issn.1001-4381.2016.000766
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布
陈俊1, 张代军2, 张天骄1,*(), 包建文2, 钟翔屿2, 张朋2, 刘巍1
1 北京服装学院 材料科学与工程学院, 北京 100029
2 中航工业复合材料技术中心, 北京 101300
Preparation of Thermoplastic Polyimide Ultrafine Fiber Nonwovens by Electrospinning
Jun CHEN1, Dai-jun ZHANG2, Tian-jiao ZHANG1,*(), Jian-wen BAO2, Xiang-yu ZHONG2, Peng ZHANG2, Wei LIU1
1 School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
2 AVIC Composite Technology Center, Beijing 101300, China
全文: PDF(6640 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为实现热塑性聚酰亚胺(LPI)无纺布的宏量制备奠定基础,以N-N-二甲基乙酰胺(DMAc)为溶剂,采用静电纺丝技术成功制备了平均直径范围为0.36~1.47μm的LPI超细纤维,系统探讨了纺丝液浓度、流速以及纺丝电压等工艺条件对LPI纤维形貌和直径的影响。结果表明:随着浓度从22%(质量分数,下同)增加到30%,LPI纤维的平均直径显著增大,同时直径分布逐渐变宽,并且在纺丝溶液浓度较低时,有纺锤状纤维存在,随着溶液浓度上升,纺锤状纤维消失,随浓度继续上升,纤维开始产生粘连。纺丝电压的改变对纤维的形貌和平均直径变化不显著;随着流速增加,纤维平均直径随之增大,当流速大于1.5mL/h时,开始出现纤维粘连,大于1.8mL/h时,出现纺锤状纤维。通过优化工艺条件,在LPI浓度28%,电压15kV,流速1.2mL/h,温度30℃,接收距离25cm条件下,制备了平均直径为1.18μm的纤维。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊
张代军
张天骄
包建文
钟翔屿
张朋
刘巍
关键词 聚酰亚胺静电纺丝超细纤维微观形貌    
Abstract

The superfine fiber of thermoplastic polyimide(LPI), whose average diameter ranges from 0.36μm to 1.47μm, was prepared through electrospinning with DMAc as solvent. It lays a good foundation for the mass preparation of LPI non-woven. The influence of electrospinning process conditions, including LPI concentration, flow rate and voltage, on morphology of LPI fiber was investigated systematically. The results show that the average diameter increases and the fibers diameter distribution turns wider with the LPI concentration increasing from 22%(mass fraction, same as below) to 30%. Meanwhile, when the concentration is rather lower, some cambiform fibers can be observed. As the concentration increases, the cambiform fiber disappears. While the concentration increases continually, the fibers are adhered to be flakiness. The change of the spinning voltage makes little difference on the average diameter of fibers; the average diameter of fibers increases with the increase of the flow rate of LPI solution; when the flow rate is more than 1.5mL/h, the fibers start to be adhered, the cambiform fibers appear while the flow rate is over 1.8mL/h. Through optimizing the process, the LPI fibers with average diameter of 1.18μm were prepared under 30℃ with the conditions of 28% concentration, 15kV voltage, 1.2mL/h flow rate and the 25cm receiving distance.

Key wordspolyamide    electrospinning    ultrafine fiber    microstructure
收稿日期: 2016-06-22      出版日期: 2018-02-01
中图分类号:  TB332  
通讯作者: 张天骄     E-mail: clyztj@bift.edu.cn
作者简介: 张天骄(1972-), 女, 副教授, 博士, 主要从事高性能纤维的研究, 联系地址:北京服装学院材料楼415(100029), E-mail: clyztj@bift.edu.cn
引用本文:   
陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
Jun CHEN, Dai-jun ZHANG, Tian-jiao ZHANG, Jian-wen BAO, Xiang-yu ZHONG, Peng ZHANG, Wei LIU. Preparation of Thermoplastic Polyimide Ultrafine Fiber Nonwovens by Electrospinning. Journal of Materials Engineering, 2018, 46(2): 41-49.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000766      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/41
Fig.1  不同浓度的LPI-A溶液外观
Fig.2  不同浓度的LPI-A溶液黏度图
Fig.3  不同LPI-A浓度下纤维的形貌
(a)22% LPI-A; (b)24% LPI-A; (c)26% LPI-A; (d)28% LPI-A; (e)30% LPI-A
Fig.4  不同LPI-A浓度下纤维的直径分布
(a)22% LPI-A; (b)24% LPI-A; (c)26% LPI-A; (d)28% LPI-A; (e)30% LPI-A
Fig.5  LPI-A纤维平均直径与浓度的关系
Fig.6  不同电压下LPI-A纤维的形貌
(a)13kV; (b)15kV; (c)17kV; (d)19kV; (e)20kV
Fig.7  不同电压下LPI-A纤维的直径分布
(a)13kV; (b)15kV; (c)17kV; (d)19kV; (e)20kV
Fig.8  LPI-A纤维平均直径与电压的关系
Fig.9  不同流速下LPI-A纤维的形貌
(a)0.3mL/h; (b)0.6mL/h; (c)0.9mL/h; (d)1.2mL/h; (e)1.5mL/h; (f)1.8mL/h
Fig.10  不同流速下LPI-A纤维的直径分布
(a)0.3mL/h; (b)0.6mL/h; (c)0.9mL/h; (d)1.2mL/h; (e)1.5mL/h; (f)1.8mL/h
Fig.11  LPI-A纤维平均直径与流速的关系
Fig.12  LPI-A纤维无纺布照片
1 李山山. 静电纺聚酰亚胺纤维的制备及结构性能的研究[D]. 上海: 东华大学, 2010.
1 LI S S. Study on preparation, structure and property of electrospun polyimide fibers[D]. Shanghai: Donghua University, 2010.
2 王云飞, 张朋, 刘刚, 等. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44 (9): 121- 128.
doi: 10.11868/j.issn.1001-4381.2016.09.019
2 WANG Y F , ZHANG P , LIU G , et al. Progress in research on polyimide composite bushings for aeroengine[J]. Journal of Materials Engineering, 2016, 44 (9): 121- 128.
doi: 10.11868/j.issn.1001-4381.2016.09.019
3 刘含洋, 赵伟栋, 潘玲英, 等. 结构、耐热、透波功能一体化石英/聚酰亚胺研究[J]. 航空材料学报, 2015, 35 (4): 34- 38.
doi: 10.11868/j.issn.1005-5053.2015.4.006
3 LIU H Y , ZHAO W D , PAN L Y , et al. Study on structure, heat resistence property and electromagnetic property of quartz fiber rein-forced polyimide composite[J]. Journal of Aeronautical Materials, 2015, 35 (4): 34- 38.
doi: 10.11868/j.issn.1005-5053.2015.4.006
4 龙娇秀. 静电纺丝法制备聚酰亚胺及聚酰亚胺-钯复合纳米纤维膜[D]. 北京: 北京化工大学, 2013.
4 LONG J X. The preparation of polyimide and polyimide/mental nanofiber via electrospinning[D]. Beijing: Beijing University of Chemical Technology, 2013.
5 SELL S A , McCLURE M J , GARG K , et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61 (12): 1007- 1019.
doi: 10.1016/j.addr.2009.07.012
6 WANG N , WANG X F , DING B , et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration[J]. Chemistry of Materials, 2012, 22, 1445- 1452.
doi: 10.1039/C1JM14299B
7 AHN Y C , PARK S K , KIM G T , et al. Development of high efficiency nanofilters made of nanofibers[J]. Current Applied Physsics, 2006, 6, 1030- 1035.
doi: 10.1016/j.cap.2005.07.013
8 BARHATE R S , RAMAKRISHNA S . Nanofibrous filtering media:filtration problems and solutions from tiny materials[J]. Journal of Membrane Science, 2007, 296, 1- 8.
doi: 10.1016/j.memsci.2007.03.038
9 HAJRA M , MEHTA K , CHASE G . Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Separation and Purification Technology, 2003, 30, 79- 88.
doi: 10.1016/S1383-5866(02)00134-X
10 TSUKRUK V V , RENEKER D H , BENG H , et al. Atomic force microscopy of ordered monolayer films from discotic liquid crystals[J]. Langmuir, 1993, 9 (8): 2141- 2144.
doi: 10.1021/la00032a039
11 DE MARCO C , MELE E , CAMPOSEO A , et al. Organic ligut-emitting nanofibers by solvent-resistant nanofluidics[J]. Advanced Materials, 2008, 20, 4158- 4162.
12 CHUANGCHOTE S , SAGAWA T , YOSHIKAWA S . Ultrafine electrospun conducting polymer blend fibers and their photoluminescence properties[J]. Macromolecular Symposia, 2008, 264, 80- 89.
doi: 10.1002/(ISSN)1521-3900
13 WANG Y Q , PARK J S , LEECH J P , et al. Poly(aryleneethylene)s with orange, yellow, green, and blue solid-state fluorescence[J]. Macromolecules, 2007, 40 (6): 1843- 1850.
doi: 10.1021/ma062801d
14 ZHANG H , SONG H W , DONG B , et al. Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers[J]. Journal of Physical Chemistry C, 2008, 112 (25): 9155- 9162.
doi: 10.1021/jp7115005
15 KHIL M S , CHA D I , KIM H Y , et al. Electrospunnanofibrous polyurethane membrane as wound dressing[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2003, 67 (2): 675- 679.
16 张福婷, 周金龙, 黄海瑞, 等. 静电纺丝法制备抑菌性聚酰亚胺纳米纤维[J]. 高等学校化学学报, 2016, 37 (4): 781- 785.
16 ZHANG F T , ZHOU J L , HUANG H R , et al. Preparation of polyimide nanofiber with antimicrobial activity by electrospinning[J]. Chemical Journal of Chinese Universities, 2016, 37 (4): 781- 785.
17 LIU J Y , MIN H , CHEN J Y , et al. Preparation of the ultra-low dielectric constant polyimide fiber membranes enabled by electrospinning[J]. Macromolecular Rapid Communications, 2007, 28, 215- 219.
doi: 10.1002/(ISSN)1521-3927
18 李学佳, 王欣, 魏取福. 静电纺丝法制备聚酰亚胺纳米纤维及其表征[J]. 化工新型材料, 2014, (5): 81- 82.
18 LI X J , WANG X , WEI Q F . Preparation and characterization of polyimide nanofibers by electrospinning[J]. New Chemical Materials, 2014, (5): 81- 82.
19 胡建聪. 高压静电纺丝法制备聚酰亚胺超细纤维无纺布膜[J]. 弹性体, 2009, 19 (1): 35- 37.
19 HU J C . Characterization of polyimide ultra-fine non-woven fabric-films prepared by electro-spinning[J]. China Elastomerics, 2009, 19 (1): 35- 37.
20 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展(Ⅱ)[J]. 合成技术及应用, 2013, 28 (2): 24- 29.
20 ZHU X , QIAN M Q , YU X H , et al. The research and development progress in polyimides and its fiber[J]. Synthetic Technology and Application, 2013, 28 (2): 24- 29.
21 PHAM Q P , SHARMA U , MIKOS A G . Electrospinning of polymeric nanofibers for tissue engineering applications:a review[J]. Tissue Engineering, 2006, 12 (5): 1197- 1211.
doi: 10.1089/ten.2006.12.1197
[1] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[2] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[3] 程慧聪, 王雅雷, 李阿欣, 刘怀菲, 武囡囡, 刘蓉. 并流共沉淀法合成Dy2O3-ZrO2纳米粉体[J]. 材料工程, 2022, 50(6): 97-106.
[4] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[5] 崔超, 袁莉莉, 尹亮, 黄玉东, 孟令辉, 杨念群, 杨士勇. 低热膨胀聚(苯并噁唑-酰亚胺)薄膜与铜黏结性能[J]. 材料工程, 2022, 50(10): 128-138.
[6] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[7] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[8] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[9] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[10] 沈慧颖, 吕子豪, 庄粟裕, 曹秀明, 王清清. 静电纺CA/PpIX多孔纤维膜的制备及其光动力性能[J]. 材料工程, 2021, 49(5): 89-97.
[11] 杜江华, 杨婷婷, 郭生伟, 喻迎春. 有序PEO/PHB核壳超细纤维的制备及性能[J]. 材料工程, 2021, 49(10): 123-131.
[12] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[13] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[14] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[15] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn