Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 128-133    DOI: 10.11868/j.issn.1001-4381.2016.000891
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
DD6单晶高温合金振动疲劳性能及断裂机理
刘丽玉1,2,3, 高翔宇1,2,3, 杨宪锋1,2,3, 何玉怀1,2,3
1. 中国航发北京航空材料研究院, 北京 100095;
2. 航空材料检测与评价北京市重点实验室, 北京 100095;
3. 材料检测与评价航空科技重点实验室, 北京 100095
Vibration Fatigue Properties and Fracture Mechanism of DD6 Single Crystal Superalloy
LIU Li-yu1,2,3, GAO Xiang-yu1,2,3, YANG Xian-feng1,2,3, HE Yu-huai1,2,3
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing 100095, China;
3. Aviation Key Laboratory of Science and Technology on Aeronautical Materials Testing and Evaluation, Beijing 100095, China
全文: PDF(3655 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究[001]取向的DD6单晶高温合金的室温振动疲劳S-N曲线,并获得了其室温振动疲劳极限。利用体视显微镜、扫描电子显微镜、背散射衍射等手段对DD6单晶高温合金振动疲劳断裂机制进行分析。结果表明:采用S-N法估算得到的[001]取向的DD6单晶高温合金室温振动疲劳极限约为337.5MPa。振动疲劳裂纹断口呈现单个或多个沿{111}晶体学扩展平面组成的形貌特征,断口上分为疲劳源区和疲劳扩展区两个阶段,裂纹在应力最大截面处的表面或内部缺陷处萌生,呈单源特征,疲劳扩展区呈现类解理断裂特征,未出现典型的疲劳条带特征。说明沿{111}晶面滑移是DD6单晶高温合金室温振动疲劳断裂的主要变形机制,断口上的类解理扩展平面以及微观上类解理花样是DD6单晶高温合金室温振动疲劳断裂的主要特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘丽玉
高翔宇
杨宪锋
何玉怀
关键词 DD6单晶高温合金振动疲劳断裂机理类解理平面    
Abstract:Room Temperature vibration fatigue S-N curves of single crystal superalloy DD6 with[001] orientation was investigated and room temperature vibration fatigue limit was obtained. The fracture mechanism was studied by OM, SEM and EBSD. The results show that based on S-N method, vibration fatigue limit of DD6 single crystal superalloy with[001] orientation is estimated to be around 337.5MPa. Vibration fatigue fracture presents single or several {111} octahedral slip planes. SEM observations show that fracture has two regions:fatigue source region and the fatigue crack propagation regions, the fatigue cracks initiate at the surface or internal defect of the cross-section with the maximum stress, and exhibits a single source feature, fatigue crack propagation region exhibits quasi-cleavage fracture, no typical fatigue striation feature. Crystal plane slip along {111} is the main deformation mechanism of RT vibration fatigue fracture of single crystal superalloy DD6, quasi-cleavage propagation plane in fracture and quasi-cleavage patterns in microstructure are the main features of RT vibration fatigue fracture of single crystal superalloy DD6.
Key wordsDD6 single crystal superalloy    vibration fatigue    fracture mechanism    quasi-cleavage plane
收稿日期: 2016-12-14      出版日期: 2018-02-01
中图分类号:  V241  
通讯作者: 刘丽玉(1983-),女,高级工程师,硕士,从事微观物理和金属损伤评价等方面研究工作,联系地址:北京市81信箱4分箱(100095),liuliyu@aliyun.com     E-mail: liuliyu@aliyun.com
引用本文:   
刘丽玉, 高翔宇, 杨宪锋, 何玉怀. DD6单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程, 2018, 46(2): 128-133.
LIU Li-yu, GAO Xiang-yu, YANG Xian-feng, HE Yu-huai. Vibration Fatigue Properties and Fracture Mechanism of DD6 Single Crystal Superalloy. Journal of Materials Engineering, 2018, 46(2): 128-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000891      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/128
[1] 陈荣章.航空铸造涡轮叶片合金和工艺发展的回顾与展望[J].航空制造技术,2002(2):19-23. CHEN R Z.Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade[J].Aeronautical Manufacturing Technology,2002(2):19-23.
[2] LI J R,ZHAO J Q,LIU S Z,et al.Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6[C]//Superalloys 2008.Warrendale,PA:TMS,2008:443-451.
[3] 张晓越,刘林,黄太文,等.凝固参数对DD6偏析和γ/γ'共晶组织演化的影响[J].稀有金属材料与工程,2013,42(12):2547-2552. ZHANG X Y,LIU L,HUANG T W,et al.Effect of solidification parameters on the segregation and γ/γ' eutectic evolution in Ni-based single crystal superalloy DD6[J].Rare Metal Materials and Engineering,2013,42(12):2547-2552.
[4] BOND S D,MARTIN J W.Surface recrystallization in a single crystal nickel-based superalloy[J].Journal of Materials Science,1984,19(19):3867-3872.
[5] 张中奎,王佰智,刘大顺,等. DD6单晶合金蠕变特性及断裂机理[J].材料科学与工程学报,2012,30(3):375-379. ZHANG Z K,WANG B Z,LIU D S,et al.Creep properties and fracture mechanism of DD6[J].Journal of Materials Science Engineering,2012,30(3):375-379.
[6] 王开国,李嘉荣,刘世忠,等.DD6单晶高温合金760℃的蠕变性能研究[J].材料工程,2015(5):7-11. WANG K G,LI J R,LIU S Z,et al.Study on creep properties of single crystal superalloy DD6 at 760℃[J].Journal of Materials Engineering,2015(5):7-11.
[7] 李嘉荣,史振学,袁海龙,等.单晶高温合金DD6拉伸性能各向异性[J].材料工程,2008(12):6-10. LI J R,SHI Z X,YUAN H L,et al.Tensile anisotropy of single crystal superalloy DD6[J].Journal of Materials Engineering,2008(12):6-10.
[8] 赵四辈.GH4037合金Ⅰ级涡轮叶片断裂失效分析[J].失效分析与预防,2007,2(4):31-34. ZHAO S B.Rupture failure analysis of GH4037 stageⅠturbo blade[J].Failure Analysis and Prevention,2007,2(4):31-34.
[9] 洪杰,刘书国,张大义,等.小型短寿命涡扇发动机涡轮叶片疲劳失效分析[J].航空动力学报,2012,27(3):604-609. HONG J,LIU S G,ZHANG D Y,et al.Fatigue failure analysis of turbine blade in miniature short-life turbofan[J].Engine Journal of Aerospace Power,2012,27(3):604-609.
[10] 姚起杭,姚军.工程结构的振动疲劳问题[J].应用力学学报,2006,23(1):12-15. YAO Q H,YAO J.Vibration fatigue in engineering structures[J].Chinese Journal of Applied Mechanics,2006,23(1):12-15.
[11] 张丽辉,唐定忠,曹雪刚.单晶高温合金损伤与断裂特征研究[J].失效分析与预防,2012,7(3):148-152. ZHANG L H,TANG D Z,CAO X G.Damage and fracture characteristics of single crystal superalloy[J].Failure Analysis and Prevention,2012,7(3):148-152.
[12] 杜凤山,闫亮,戴圣龙,等.高强铝合金疲劳特性研究[J].航空材料学报,2009,29(1):96-100. DU F S,YAN L,DAI S L,et a1.Study on fatigue performance of high strength aluminum alloy[J].Journal of Aeronautical Materials,2009,29(1):96-100.
[13] 刘昌奎,杨胜,何玉怀,等.单晶高温合金断裂特征[J].失效分析与预防,2010,5(4):225-230. LIU C K,YANG S,HE Y H,et al.Fracture features of single crystal superalloys[J].Failure Analysis and Prevention,2010,5(4):225-230.
[14] SHI Z X,LI J R,LIU S Z,et al.High cycle fatigue behavior of the second generation single crystal superalloy DD6[J].Transactions of Nonferrous Metals Society of China,2011,21(5):998-1003.
[15] BOWEN A W,FORSYTH P J E.On the mechanism of mixed fatigue-tensile crack growth[J].Materials Science & Engineering,1981,49(2):141-154.
[16] WAN J S,YUE Z F.A low-cycle fatigue life model of nickel-based single crystal superalloys under multiaxial stress state[J].Materials Science and Engineering:A,2005,392(1/2):145-149.
[1] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4): 84-89.
[2] 胡春燕, 刘新灵, 陶春虎, 曹春晓. 气膜孔分布对DD6单晶高温合金持久性能及断裂行为的影响[J]. 材料工程, 2016, 44(5): 93-100.
[3] 王欣, 尤宏德, 李嘉荣, 赵金乾, 汤智慧, 陆峰. 陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响[J]. 材料工程, 2014, 0(4): 53-57.
[4] 龙宪海, 阳能军, 王汉功. 基于声发射技术的30CrMnSi钢断裂机理研究[J]. 材料工程, 2011, 0(1): 17-22.
[5] 邵红红, 蒋小燕, 张道军. 40CrNiMoA钢不同微观组织超声疲劳寿命研究[J]. 材料工程, 2008, 0(5): 24-28.
[6] 蔡建明, 李臻熙, 曹春晓, 黄旭, 雷强, 张元伟. Ti60钛合金中富钕稀土相颗粒对叶片室温振动疲劳性能的影响[J]. 材料工程, 2007, 0(8): 57-60.
[7] 刘维维, 唐定中. 抽拉速率对DD6单晶高温合金凝固组织的影响[J]. 材料工程, 2006, (1): 16-18.
[8] 张庆安, 高甲生, 陈慧芬, 何宜柱. IF钢压薄滚焊接头断裂机理[J]. 材料工程, 1998, 0(2): 44-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn