Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 22-26    DOI: 10.11868/j.issn.1001-4381.2016.000958
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超临界干燥制备PSNB气凝胶及其超疏水性能研究
刘洪丽1,*(), 邓青沂1, 褚鹏2
1 天津城建大学 材料科学与工程学院, 天津 300384
2 天津市建筑科学研究院有限公司 建材研究所, 天津 300193
Preparation and Hydrophobic Properties of Polyborosilazane Aerogels via CO2 Supercritical Drying
Hong-li LIU1,*(), Qing-yi DENG1, Peng CHU2
1 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
2 Research Institute of Building Materials, Tianjin Research Institute of Building Science Co., Ltd., Tianjin 300193, China
全文: PDF(2369 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以聚硼硅氮烷为原料,二乙烯苯为交联剂,通过硅氢加成反应结合超临界干燥工艺制备聚硼硅氮烷气凝胶。利用红外光谱、扫描电镜、比表面积与孔径分析仪对所制备气凝胶的形成及微观结构进行了分析,并通过接触角仪对样品的疏水性能进行了研究。结果表明:聚硼硅氮烷和二乙烯苯通过硅氢加成反应制得聚硼硅氮烷气凝胶;所制备的气凝胶的比表面积为307~458cm2/g,孔体积为1.20~2.17cm3/g,孔径分布为2.0~100nm,是一种具有三维网状结构的介孔材料,并具有超疏水性能,且当起始溶剂体积分数为85%时,气凝胶疏水性能最佳,接触角为151.5°。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洪丽
邓青沂
褚鹏
关键词 聚硼硅氮烷硅氢加成反应气凝胶二氧化碳超临界干燥疏水性    
Abstract

The polyborosilazane aerogels were prepared by hydrosilylation reaction using polyborosilazane as raw material with divinylbenzeneas crosslinking agent, and then dried by CO2 supercritical drying. Infrared spectroscopy, scanning electron microscopy, specific surface area and aperture analyzer, contact angle measurement were used to characterize the formation, microstructure and hydrophobic property of polyborosilazane aerogels. The results show that the polyborosilazane aerogels are prepared by hydrosilylation reaction using polyborosilazane with divinylbenzene; the specific surface areas of the resultant aerogels with three-dimensional network structure are in the range of 307-458cm2/g, which is a mesoporous material with superhydrophobic property. The pore volume is in the range of 1.20-2.17cm3/g and pore size is in the range of 2.0-100nm, and when the volume fraction of the starting solvent is 85%, the hydrophobic performance of polyborosilazane aerogels is the best, the water contact angle is 151.5°.

Key wordspolyborosilazane    hydrosilylation reaction    aerogel    CO2 supercritical drying    hydrophobic property
收稿日期: 2016-08-11      出版日期: 2018-02-01
中图分类号:  O648  
基金资助:国家自然科学基金资助项目(51472175);天津市应用基础与前沿技术研究计划重点资助项目(15JCZDJC37200)
通讯作者: 刘洪丽     E-mail: lhlbh@163.com; 1599411585@qq.com
作者简介: 刘洪丽(1971-), 女, 教授, 博士, 研究方向为绿色化学建材, 联系地址:天津市西青区津静路26号天津城建大学材料学院(300384), E-mail: lhlbh@163.com, 1599411585@qq.com
引用本文:   
刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
Hong-li LIU, Qing-yi DENG, Peng CHU. Preparation and Hydrophobic Properties of Polyborosilazane Aerogels via CO2 Supercritical Drying. Journal of Materials Engineering, 2018, 46(2): 22-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000958      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/22
Fig.1  PSNB先驱体和PSNB气凝胶的红外光谱图
Fig.2  PSNB气凝胶实物照片
Fig.3  PSNB气凝胶的SEM照片 (a)PSNB-80;(b)PSNB-85;(c)PSNB-90;(d)PSNB-95
Fig.4  PSNB气凝胶不同起始溶剂浓度的吸附-脱附等温线(a)和孔径分布图(b)
Sample Density/(g·cm-3) Porosity/% BET surface area/(m2·g-1) Average pore diameter/nm Total pore volume/(cm3·g-1)
PSNB-80 0.27 80 317.15 11.75 1.20
PSNB-85 0.19 86 322.11 13.84 1.43
PSNB-90 0.10 93 307.50 16.72 1.55
PSNB-95 0.04 97 458.16 14.92 2.17
Table 1  气凝胶不同溶剂浓度的微观结构参数表
Fig.5  PSNB气凝胶的接触角图像 (a)PSNB-80;(b)PSNB-85;(c)PSNB-90;(d)PSNB-95
Fig.6  PSNB-85气凝胶(密度为0.19g/cm3)浮于水面照片(a)及接触角图像(b)
1 HRUBESH L W . Aerogel applications[J]. Journal of Non-Crystalline Solids, 1998, 225, 335- 342.
doi: 10.1016/S0022-3093(98)00135-5
2 MUCALO M R , MILESTONE N B , BROWNI W M . NMR and X-ray diffraction studies of amorphous and crystallized pyrolysis residues from pre-ceramic polymers[J]. Journal of Material Science, 1997, 32 (9): 2433- 2444.
doi: 10.1023/A:1018517526441
3 房光强, 沈登雄, 栗付平, 等. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43 (12): 17- 23.
doi: 10.11868/j.issn.1001-4381.2015.12.004
3 FANG G Q , SHEN D X , LI F P , et al. Synthesis and properties of atomic-oxygen resistant polyimide-SiO2nanocomposite aerogels[J]. Journal of Materials Engineering, 2015, 43 (12): 17- 23.
doi: 10.11868/j.issn.1001-4381.2015.12.004
4 ALKEMPER J , BUCHHOLZ T , MURAKAMI K , et al. Solidification of aluminium alloys in aerogel moulds[J]. Journal of Non-crystalline Solids, 1995, 186, 395- 401.
doi: 10.1016/0022-3093(95)00060-7
5 ALKEMPER J , SOUS S , STOCKER C , et al. Directional solidification in an aerogel furnace with high resolution optical temperature measurements[J]. Journal of Crystal Growth, 1998, 191, 252- 260.
doi: 10.1016/S0022-0248(98)00114-6
6 AHMED M S , ATRIA Y A . Aerogel materials for photocatalytic detoxification of cyanide wastes in water[J]. Journal of Non-crystalline Solids, 1995, 186, 402- 407.
doi: 10.1016/0022-3093(95)00085-2
7 YING T Y , YANG K L , YIACOUMI S , et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. Journal of Colloid and Interface Science, 2002, 250 (1): 18- 27.
doi: 10.1006/jcis.2002.8314
8 GOEL J , KADIRBELU K , RAJAGOPAL C , et al. Removal of mercury from aqueous solution by adsorption on carbon aerogel:response surface methodological approach[J]. Carbon, 2005, 43 (1): 197- 200.
doi: 10.1016/j.carbon.2004.08.002
9 KISTLER S S . Coherent expanded aerogels and jellies[J]. Nature, 1931, 127 (3211): 741- 741.
10 HE S , LI Z , SHI X , et al. Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area[J]. Advanced Powder Technology, 2015, 26 (2): 537- 541.
doi: 10.1016/j.apt.2015.01.002
11 NGUYEN C T , NGHIEM Q D , KIM D . Controlled/living radical polymerization of vinylcyclicsilazane by RAFT process and their block copolymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2008, 46 (13): 4594- 4601.
doi: 10.1002/(ISSN)1099-0518
12 SORARÙ G D , MODENA S , GUADAGNINO E , et al. Chemical durability of silicon oxycarbide glasses[J]. Journal of the American Ceramic Society, 2002, 85 (6): 1529- 1536.
doi: 10.1111/jace.2002.85.issue-6
13 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32 (1): 40- 44.
13 FENG J , GAO Q F , FENG J Z , et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32 (1): 40- 44.
14 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43 (8): 31- 36.
doi: 10.11868/j.issn.1001-4381.2015.08.006
14 YU Y X , WU X Y , SAN H S . Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying[J]. Journal of Materials Engineering, 2015, 43 (8): 31- 36.
doi: 10.11868/j.issn.1001-4381.2015.08.006
15 BLASZCZYŃSKI T , SLOSARCZYK A , MORAWSKI M . Synthesis of silica aerogel by supercritical drying method[J]. Procedia Engineering, 2013, 57 (1): 200- 206.
16 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20 (4): 376- 384.
16 HE Y S , LI Z , XI H X , et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption, 2004, 20 (4): 376- 384.
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 余煜玺, 贾嫣婷, 黄柳英, 朱建, 丛明辉, 宋经远. 低温SiO2气凝胶基复合相变材料的制备与性能分析[J]. 材料工程, 2022, 50(8): 115-123.
[3] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[4] 赖晓翔, 余红雅, 冯越, 钟喜春, 刘仲武. 亲疏水性SiO2复合有机树脂包覆对FeSiCr磁粉芯性能的影响[J]. 材料工程, 2022, 50(2): 135-143.
[5] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[6] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[7] 章玲, 王雪, 李家强, 罗楚养, 张威, 张礼颖. 碳纳米纤维增强聚酰亚胺复合气凝胶的合成与性能[J]. 材料工程, 2022, 50(1): 125-131.
[8] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[9] 张双红, 杨波, 翟伟, 李爽, 孔纲. 甲基硅酸盐/硅酸盐复合膜的组成和性能研究[J]. 材料工程, 2021, 49(5): 163-170.
[10] 李天, 支丹丹, 郭子浩, 郭玮琳, 张美玲, 孟凡彬. 石墨烯基气凝胶微球的研究进展[J]. 材料工程, 2021, 49(11): 14-29.
[11] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
[12] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[13] 冯志海, 师建军, 孔磊, 罗丽娟, 梁馨, 匡松连. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24.
[14] 侯根良, 李浩, 毕松, 苏正安, 刘朝辉, 林阳阳, 汤进. 基于不同粒径SiO2的疏水薄膜制备及其性能[J]. 材料工程, 2020, 48(2): 32-37.
[15] 何照荣, 揭晓华, 连玮琦. 电火花加工制备铜基微纳层次结构及其疏水性能[J]. 材料工程, 2020, 48(1): 144-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn