Preparation and Hydrophobic Properties of Polyborosilazane Aerogels via CO2 Supercritical Drying
Hong-li LIU1,*(), Qing-yi DENG1, Peng CHU2
1 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China 2 Research Institute of Building Materials, Tianjin Research Institute of Building Science Co., Ltd., Tianjin 300193, China
The polyborosilazane aerogels were prepared by hydrosilylation reaction using polyborosilazane as raw material with divinylbenzeneas crosslinking agent, and then dried by CO2 supercritical drying. Infrared spectroscopy, scanning electron microscopy, specific surface area and aperture analyzer, contact angle measurement were used to characterize the formation, microstructure and hydrophobic property of polyborosilazane aerogels. The results show that the polyborosilazane aerogels are prepared by hydrosilylation reaction using polyborosilazane with divinylbenzene; the specific surface areas of the resultant aerogels with three-dimensional network structure are in the range of 307-458cm2/g, which is a mesoporous material with superhydrophobic property. The pore volume is in the range of 1.20-2.17cm3/g and pore size is in the range of 2.0-100nm, and when the volume fraction of the starting solvent is 85%, the hydrophobic performance of polyborosilazane aerogels is the best, the water contact angle is 151.5°.
HRUBESH L W . Aerogel applications[J]. Journal of Non-Crystalline Solids, 1998, 225, 335- 342.
doi: 10.1016/S0022-3093(98)00135-5
2
MUCALO M R , MILESTONE N B , BROWNI W M . NMR and X-ray diffraction studies of amorphous and crystallized pyrolysis residues from pre-ceramic polymers[J]. Journal of Material Science, 1997, 32 (9): 2433- 2444.
doi: 10.1023/A:1018517526441
FANG G Q , SHEN D X , LI F P , et al. Synthesis and properties of atomic-oxygen resistant polyimide-SiO2nanocomposite aerogels[J]. Journal of Materials Engineering, 2015, 43 (12): 17- 23.
doi: 10.11868/j.issn.1001-4381.2015.12.004
4
ALKEMPER J , BUCHHOLZ T , MURAKAMI K , et al. Solidification of aluminium alloys in aerogel moulds[J]. Journal of Non-crystalline Solids, 1995, 186, 395- 401.
doi: 10.1016/0022-3093(95)00060-7
5
ALKEMPER J , SOUS S , STOCKER C , et al. Directional solidification in an aerogel furnace with high resolution optical temperature measurements[J]. Journal of Crystal Growth, 1998, 191, 252- 260.
doi: 10.1016/S0022-0248(98)00114-6
6
AHMED M S , ATRIA Y A . Aerogel materials for photocatalytic detoxification of cyanide wastes in water[J]. Journal of Non-crystalline Solids, 1995, 186, 402- 407.
doi: 10.1016/0022-3093(95)00085-2
7
YING T Y , YANG K L , YIACOUMI S , et al. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. Journal of Colloid and Interface Science, 2002, 250 (1): 18- 27.
doi: 10.1006/jcis.2002.8314
8
GOEL J , KADIRBELU K , RAJAGOPAL C , et al. Removal of mercury from aqueous solution by adsorption on carbon aerogel:response surface methodological approach[J]. Carbon, 2005, 43 (1): 197- 200.
doi: 10.1016/j.carbon.2004.08.002
9
KISTLER S S . Coherent expanded aerogels and jellies[J]. Nature, 1931, 127 (3211): 741- 741.
10
HE S , LI Z , SHI X , et al. Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area[J]. Advanced Powder Technology, 2015, 26 (2): 537- 541.
doi: 10.1016/j.apt.2015.01.002
11
NGUYEN C T , NGHIEM Q D , KIM D . Controlled/living radical polymerization of vinylcyclicsilazane by RAFT process and their block copolymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2008, 46 (13): 4594- 4601.
doi: 10.1002/(ISSN)1099-0518
12
SORARÙ G D , MODENA S , GUADAGNINO E , et al. Chemical durability of silicon oxycarbide glasses[J]. Journal of the American Ceramic Society, 2002, 85 (6): 1529- 1536.
doi: 10.1111/jace.2002.85.issue-6
FENG J , GAO Q F , FENG J Z , et al. Preparation and properties of fiber reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32 (1): 40- 44.
YU Y X , WU X Y , SAN H S . Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying[J]. Journal of Materials Engineering, 2015, 43 (8): 31- 36.
doi: 10.11868/j.issn.1001-4381.2015.08.006
15
BLASZCZYŃSKI T , SLOSARCZYK A , MORAWSKI M . Synthesis of silica aerogel by supercritical drying method[J]. Procedia Engineering, 2013, 57 (1): 200- 206.