Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 50-56    DOI: 10.11868/j.issn.1001-4381.2016.001286
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
梯度结构Al2O3-(W, Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备
倪秀英1,2, 赵军1,*(), 孙加林1, 李洪江3, 侯冠明1, 田源4
1 山东大学 机械工程学院, 济南 250061
2 鲁东大学 交通学院, 山东 烟台 264025
3 雷沃国际重工股份有限公司, 山东 潍坊 261206
4 齐鲁工业大学 机械与汽车工程学院, 济南 250061
Design and Fabrication of Al2O3-(W, Ti)C-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures
Xiu-ying NI1,2, Jun ZHAO1,*(), Jia-lin SUN1, Hong-jiang LI3, Guan-ming HOU1, Yuan TIAN4
1 School of Mechanical Engineering, Shandong University, Jinan 250061, China
2 School of Transportation, Ludong University, Yantai 264025, Shandong, China
3 Lovol Heavy Industry Co., Ltd., Weifang 261206, Shandong, China
4 School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250061, China
全文: PDF(5012 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于对高速硬切削时刀具应力和温度分布,以及刀具内部疲劳裂纹扩展仿真分析,提出一个组分含量分布和微观结构具有梯度特征的设计模型。通过韧性相的添加和梯度结构的引入,实现疲劳裂纹扩展速率的减缓,从而提高刀具寿命。采用二阶段热压烧结工艺制备出具有梯度结构的Al2O3-(W,Ti)C-TiN-Mo-Ni纳米复合刀具材料,并对其微观结构和力学性能进行研究。结果表明:所制备的梯度结构金属陶瓷材料表层硬度、内层的断裂韧度和抗弯强度分别达到19.258GPa,10.015MPa·m1/2和1017.475MPa,满足高速硬切削刀具的性能要求。材料的断口出现韧窝和黏结相撕裂形成的断裂棱,有利于断裂韧度和抗弯强度的增强,从而提高刀具抗疲劳裂纹扩展能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪秀英
赵军
孙加林
李洪江
侯冠明
田源
关键词 梯度结构金属陶瓷疲劳裂纹结构设计热压烧结    
Abstract

Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W, Ti)C-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa, respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength, so the resistance to fatigue crack propagation of tools is improved.

Key wordsgraded structure    cermet    fatigue crack    structure design    hot-pressing sintering
收稿日期: 2016-10-24      出版日期: 2018-02-01
中图分类号:  TQ174  
基金资助:国家自然科学基金资助项目(51475273)
通讯作者: 赵军     E-mail: zhaojun@sdu.edu.cn
作者简介: 赵军(1967-), 男, 教授, 博士, 研究方向:高效切削刀具, 联系地址:山东省济南市经十路17923号山东大学机械工程学院(250061), E-mail: zhaojun@sdu.edu.cn
引用本文:   
倪秀英, 赵军, 孙加林, 李洪江, 侯冠明, 田源. 梯度结构Al2O3-(W, Ti) C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J]. 材料工程, 2018, 46(2): 50-56.
Xiu-ying NI, Jun ZHAO, Jia-lin SUN, Hong-jiang LI, Guan-ming HOU, Yuan TIAN. Design and Fabrication of Al2O3-(W, Ti)C-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures. Journal of Materials Engineering, 2018, 46(2): 50-56.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001286      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/50
Fig.1  有限元模型及仿真结果 (a)切削仿真模型;(b)最大主应力场;(c)温度场
Fig.2  切削疲劳裂纹仿真(a)和实验结果(b)
Fig.3  5层对称梯度结构材料模型
Code Al2O3
(0.5μm)
Al2O3
(20nm)
(W, Ti)C
(3μm)
TiN
(0.5μm)
Mo
(0.6μm)
Ni
(0.6μm)
AWT 44.0 11 45
AWTNN2 36.5 11 47 2.5 1.0 2
AWTNN4 32.5 11 48 4.0 1.5 3
AWTNN5 29.0 11 49 5.0 2.0 4
AWTNN7 25.0 11 50 6.5 2.5 5
AWTNN8 21.5 11 51 7.5 3.0 6
AWTNN10 14.0 11 53 10.0 4.0 8
Table 1  不同纳米复合材料的组成(体积分数/%)
NoLayer
1/5 2/4 3
A AWT AWTNN2 AWTNN5
B AWT AWTNN4 AWTNN7
C AWT AWTNN4 AWTNN8
D AWT AWTNN5 AWTNN10
Table 2  5层对称型梯度结构金属陶瓷刀具材料设计
Fig.4  样品A的横剖面(a)及红色框内的Al(b)和Ni(c)元素面分布图
NoKIC/(MPa·m1/2) σb/MPaHV/GPa
1 2 3 1 2 3
A 7.601 8.974 10.015 1017.475 19.258 18.135 16.722
B 7.660 8.183 8.712 1142.875 19.095 18.942 18.673
C 7.761 8.116 8.419 1105.126 18.584 18.367 18.155
D 8.546 8.217 8.084 1075.062 18.447 18.038 17.668
Table 3  梯度纳米复合材料的力学性能
Fig.5  梯度结构材料断口各层的SEM图 (a)样品A;(b)样品D;(1)第1层;(2)第2层;(3)第3层
Fig.6  样本A抛光面的SEM图 (a)第1层;(b)第3层
1 WANG B , LIU Z . Cutting performance of solid ceramic end milling tools in machining hardened AlSi H13 steel[J]. International Journal of Refractory Metals and Hard Materials, 2016, 55, 24- 32.
doi: 10.1016/j.ijrmhm.2015.11.004
2 ZHOU S Q , WEI Z , WEI H X , et al. Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C, N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27 (4): 740- 746.
doi: 10.1016/j.ijrmhm.2008.12.005
3 ZHAO J , AI X . Fabrication and cutting performance of an Al2O3-(W, Ti)C functionally gradient ceramic tool[J]. International Journal of Machining and Machinability of Materials, 2006, 1 (3): 277- 286.
doi: 10.1504/IJMMM.2006.011371
4 TIAN X , ZHAO J , WANG Y , et al. Fabrication and mechanical properties of Si3N4/(W, Ti)C/Co graded nano-composite ceramic tool materials[J]. Ceramics International, 2015, 41 (3): 3381- 3389.
doi: 10.1016/j.ceramint.2014.10.067
5 KEⅡCHIRO T , TAKAFUMI S , HIROYASU A . Evaluation of R-curve behavior of ceramic-metal functionally graded materials by stable crack growth[J]. Engineering Fracture Mechanics, 2005, 72, 2359- 2372.
doi: 10.1016/j.engfracmech.2005.03.006
6 史国栋, 梁军, 陈贵清, 等. 金属/陶瓷微叠层材料的微观结构及力学性能[J]. 稀有金属材料与工程, 2007, 36, 677- 680.
doi: 10.3321/j.issn:1002-185x.2007.z2.195
6 SHI G D , LIANG J , CHEN G Q , et al. Microstructure and mechanical properties of metal/ceramic microlaminate composites[J]. Rare Metal Materials and Engineering, 2007, 36, 677- 680.
doi: 10.3321/j.issn:1002-185x.2007.z2.195
7 HUANG C Y , CHEN Y L . Design and impact resistant analysis of functionally graded Al2O3-ZrO2 ceramic composite[J]. Materials & Design, 2016, 91, 294- 305.
8 ZHOU W , ZHOU H , ZHANG R , et al. Measuring residual stress and its influence on properties of porous ZrO2/(ZrO2+Ni) ceramics[J]. Materials Science and Engineering:A, 2015, 622, 82- 90.
doi: 10.1016/j.msea.2014.11.018
9 ZHENG G M , ZHAO J , ZHOU Y H , et al. Fabrication and characterization of Sialon-Si3N4 graded nano-composite ceramic tool materials[J]. Composites Part B:Engineering, 2011, 42 (7): 1813- 1820.
doi: 10.1016/j.compositesb.2011.07.007
10 CARVALHO O , BUCIUMEANU M , MIRANDA G , et al. Development of a method to produce FGMs by controlling the reinforcement distribution[J]. Materials & Design, 2016, 92, 233- 239.
11 郑光明, 赵军, 周咏辉, 等. Sialon-Si3N4系梯度纳米复合陶瓷刀具材料的设计及制备[J]. 硅酸盐学报, 2011, 39 (5): 783- 788.
11 ZHENG G M , ZHAO J , ZHOU Y H , et al. Design and fabrication of Sialon-Si3N4 gradient nano-composite ceramic tool materials[J]. Journal of the Chinese Ceramic Society, 2011, 39 (5): 783- 788.
12 YIN Z B , HUANG C Z , ZOU B , et al. Preparation and characterization of Al2O3/TiC micro-nano-composite ceramic tool materials[J]. Ceramics International, 2013, 39, 4253- 4262.
doi: 10.1016/j.ceramint.2012.10.277
13 ZHOU Y H , AI X , ZHAO J , et al. Mechanical properties and microstructure of A12O3/(W, Ti)C nanocomposite[J]. Key Engineering Materials, 2008, 368/372, 717- 720.
doi: 10.4028/www.scientific.net/KEM.368-372
14 LI J , SUN J L , HUANG L P . Effects of ductile cobalt on fracture behavior of Al2O3-TiC ceramic[J]. Materials Science and Engineering:A, 2002, 323, 17- 20.
doi: 10.1016/S0921-5093(01)01377-6
15 YIN Z B , HUANG C Z , ZOU B , et al. Effects of particulate metallic phase on microstructure and mechanical properties of carbide reinforced alumina ceramic tool materials[J]. Ceramics International, 2014, 40, 2809- 2817.
doi: 10.1016/j.ceramint.2013.10.033
16 陈维平, 韩孟岩, 杨少锋. Al2O3陶瓷复合材料的研究进展[J]. 材料工程, 2011, (3): 91- 96.
16 CHEN W P , HAN M Y , YANG S F . Research progress of Al2O3 ceramic composites[J]. Journal of Materials Engineering, 2011, (3): 91- 96.
17 QU H X , ZHU S G . Two step hot pressing sintering of dense fine grained WC-Al2O3 composites[J]. Ceramics International, 2013, 39 (5): 5415- 5425.
doi: 10.1016/j.ceramint.2012.12.049
18 YANG D Y , YOON D Y , KANG S L . Suppression of abnormal grain growth in WC-Co via two step liquid phase sintering[J]. Journal of the American Ceramic Society, 2011, 94 (4): 1019- 1024.
doi: 10.1111/jace.2011.94.issue-4
19 EVANS A G , CHARLES E A . Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59 (7/8): 371.
20 王跃明, 时启龙. 等温化学气相渗透法制备C/C-SiC复合材料的摩擦磨损性能[J]. 航空材料学报, 2017, 37 (4): 52- 60.
doi: 10.11868/j.issn.1005-5053.2016.000199
20 WANG Y M , SHI Q L . Tribological property of C/C-SiC composites fabricated by isothermal chemical vapor infiltration[J]. Journal of Aeronautical Materials, 2017, 37 (4): 52- 60.
doi: 10.11868/j.issn.1005-5053.2016.000199
[1] 刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
[2] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[3] 赵景云, BamberBLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[4] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[5] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[6] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[7] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[8] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[9] 祖磊, 汪洋, 王继辉, 李书欣, 王路, 谢丽婷. 钛内衬复合材料环形气瓶结构设计与优化[J]. 材料工程, 2016, 44(2): 56-62.
[10] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[11] 陈雅斓, 刘海昌, 滕元成. 热压烧结掺钕钛酸盐组合矿物固化体及其浸出性能[J]. 材料工程, 2015, 43(5): 56-61.
[12] 丁昊昊, 王文健, 郭俊, 刘启跃, 朱旻昊. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10): 35-41.
[13] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[14] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
[15] 金宝, 邸新杰, 张建军, 李伟. 疲劳裂纹扩展的金属磁记忆信号特征[J]. 材料工程, 2014, 0(11): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn