1 School of Mechanical Engineering, Shandong University, Jinan 250061, China 2 School of Transportation, Ludong University, Yantai 264025, Shandong, China 3 Lovol Heavy Industry Co., Ltd., Weifang 261206, Shandong, China 4 School of Mechanical & Automotive Engineering, Qilu University of Technology, Jinan 250061, China
Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W, Ti)C-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa, respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength, so the resistance to fatigue crack propagation of tools is improved.
WANG B , LIU Z . Cutting performance of solid ceramic end milling tools in machining hardened AlSi H13 steel[J]. International Journal of Refractory Metals and Hard Materials, 2016, 55, 24- 32.
doi: 10.1016/j.ijrmhm.2015.11.004
2
ZHOU S Q , WEI Z , WEI H X , et al. Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C, N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27 (4): 740- 746.
doi: 10.1016/j.ijrmhm.2008.12.005
3
ZHAO J , AI X . Fabrication and cutting performance of an Al2O3-(W, Ti)C functionally gradient ceramic tool[J]. International Journal of Machining and Machinability of Materials, 2006, 1 (3): 277- 286.
doi: 10.1504/IJMMM.2006.011371
4
TIAN X , ZHAO J , WANG Y , et al. Fabrication and mechanical properties of Si3N4/(W, Ti)C/Co graded nano-composite ceramic tool materials[J]. Ceramics International, 2015, 41 (3): 3381- 3389.
doi: 10.1016/j.ceramint.2014.10.067
5
KEⅡCHIRO T , TAKAFUMI S , HIROYASU A . Evaluation of R-curve behavior of ceramic-metal functionally graded materials by stable crack growth[J]. Engineering Fracture Mechanics, 2005, 72, 2359- 2372.
doi: 10.1016/j.engfracmech.2005.03.006
SHI G D , LIANG J , CHEN G Q , et al. Microstructure and mechanical properties of metal/ceramic microlaminate composites[J]. Rare Metal Materials and Engineering, 2007, 36, 677- 680.
doi: 10.3321/j.issn:1002-185x.2007.z2.195
7
HUANG C Y , CHEN Y L . Design and impact resistant analysis of functionally graded Al2O3-ZrO2 ceramic composite[J]. Materials & Design, 2016, 91, 294- 305.
8
ZHOU W , ZHOU H , ZHANG R , et al. Measuring residual stress and its influence on properties of porous ZrO2/(ZrO2+Ni) ceramics[J]. Materials Science and Engineering:A, 2015, 622, 82- 90.
doi: 10.1016/j.msea.2014.11.018
9
ZHENG G M , ZHAO J , ZHOU Y H , et al. Fabrication and characterization of Sialon-Si3N4 graded nano-composite ceramic tool materials[J]. Composites Part B:Engineering, 2011, 42 (7): 1813- 1820.
doi: 10.1016/j.compositesb.2011.07.007
10
CARVALHO O , BUCIUMEANU M , MIRANDA G , et al. Development of a method to produce FGMs by controlling the reinforcement distribution[J]. Materials & Design, 2016, 92, 233- 239.
ZHENG G M , ZHAO J , ZHOU Y H , et al. Design and fabrication of Sialon-Si3N4 gradient nano-composite ceramic tool materials[J]. Journal of the Chinese Ceramic Society, 2011, 39 (5): 783- 788.
12
YIN Z B , HUANG C Z , ZOU B , et al. Preparation and characterization of Al2O3/TiC micro-nano-composite ceramic tool materials[J]. Ceramics International, 2013, 39, 4253- 4262.
doi: 10.1016/j.ceramint.2012.10.277
13
ZHOU Y H , AI X , ZHAO J , et al. Mechanical properties and microstructure of A12O3/(W, Ti)C nanocomposite[J]. Key Engineering Materials, 2008, 368/372, 717- 720.
doi: 10.4028/www.scientific.net/KEM.368-372
14
LI J , SUN J L , HUANG L P . Effects of ductile cobalt on fracture behavior of Al2O3-TiC ceramic[J]. Materials Science and Engineering:A, 2002, 323, 17- 20.
doi: 10.1016/S0921-5093(01)01377-6
15
YIN Z B , HUANG C Z , ZOU B , et al. Effects of particulate metallic phase on microstructure and mechanical properties of carbide reinforced alumina ceramic tool materials[J]. Ceramics International, 2014, 40, 2809- 2817.
doi: 10.1016/j.ceramint.2013.10.033
CHEN W P , HAN M Y , YANG S F . Research progress of Al2O3 ceramic composites[J]. Journal of Materials Engineering, 2011, (3): 91- 96.
17
QU H X , ZHU S G . Two step hot pressing sintering of dense fine grained WC-Al2O3 composites[J]. Ceramics International, 2013, 39 (5): 5415- 5425.
doi: 10.1016/j.ceramint.2012.12.049
18
YANG D Y , YOON D Y , KANG S L . Suppression of abnormal grain growth in WC-Co via two step liquid phase sintering[J]. Journal of the American Ceramic Society, 2011, 94 (4): 1019- 1024.
doi: 10.1111/jace.2011.94.issue-4
19
EVANS A G , CHARLES E A . Fracture toughness determinations by indentation[J]. Journal of the American Ceramic Society, 1976, 59 (7/8): 371.
WANG Y M , SHI Q L . Tribological property of C/C-SiC composites fabricated by isothermal chemical vapor infiltration[J]. Journal of Aeronautical Materials, 2017, 37 (4): 52- 60.
doi: 10.11868/j.issn.1005-5053.2016.000199