Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 57-65    DOI: 10.11868/j.issn.1001-4381.2016.001453
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能
张曼莉, 邱长军(), 蒋艳林, 郑文权, 夏琰
南华大学 机械工程学院, 湖南 衡阳 421001
Microstructure and Properties of Laser In-situ Synthesized Al2O3-TiO2 Composite Ceramic Coating
Man-li ZHANG, Chang-jun QIU(), Yan-lin JIANG, Wen-quan ZHENG, Yan XIA
School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan, China
全文: PDF(4994 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

先利用火焰喷涂技术在中国低活化马氏体钢表面制备了CrFeAlTi涂层,然后通过激光原位反应技术在火焰喷涂涂层表面原位合成了Al2O3-TiO2复合陶瓷涂层。分别采用体视显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、显微硬度计、立式万能摩擦磨损试验机以及静态铅铋腐蚀实验装置等分析测试手段对涂层的形貌、微观组织结构、物相组成、显微硬度、干滑动摩擦磨损性能以及耐液态铅铋合金腐蚀性能等进行了研究。实验结果表明:激光原位合成的Al2O3-TiO2复合陶瓷涂层表面整体平整、光滑、致密,基本没有凹坑、裂纹和孔隙等缺陷,与基体之间形成了良好的冶金结合。涂层内部存在完全结晶区和非结晶区,且界面明显。涂层表面主要物相为Al2O3,TiO2,(Al.948Cr.052)2O3,Fe2TiO5和FeCr等。涂层截面平均显微硬度约为1864.2HV0.2,比基体CLAM钢提高了约3倍,且沿横截面方向呈平稳过渡的阶梯状分布。与基体CLAM钢相比,涂层具有良好的耐磨性能,其磨损量仅为基体的1/6,并且涂层在液态铅铋中表现出良好的耐腐蚀性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张曼莉
邱长军
蒋艳林
郑文权
夏琰
关键词 火焰喷涂激光原位合成技术Al2O3-TiO2复合陶瓷涂层微观组织结构性能    
Abstract

The study involves in-situ synthesis of CrFeAlTi composite coating using laser micro-melting processing. The coating was successfully prepared by laser irradiating CrFeAlTi coating prepared by flame spraying on the China low activation martensitic (CLAM) steel substrate, and then Al2O3-TiO2 composite ceramic coating was synthesized by in-situ reaction on the surface of flame sprayed coating. The coating morphology, microstructure, phase composition, micro-hardness, dry sliding wear properties and corrosion resistance in liquid PbBi alloy were analyzed by stereomicroscope, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), micro-sclerometer, vertical universal friction wear testing machine and static PbBi corrosion test device, respectively. The test results show that the surface of Al2O3-TiO2 composite ceramic coating is smooth, and the microstructure of coating is both homogeneous and dense without defects such as crack, dimple and porosity, etc., a good metallurgical bonding between the composite ceramic coating and the substrate, and the interface is obvious. The phases of the coating surface are mainly composed of Al2O3, TiO2, (Al.948Cr.052)2O3, Fe2TiO5 and FeCr, etc. The coating shows a high average micro-hardness of approximately 1864.2HV0.2, which is about three times higher than that of the CLAM steel substrate, and presents gradient distribution with stable transition from the coating surface to the substrate. Comparing with the substrate, the coating presents excellent wear resistance. The wear mass loss of the coating is just one sixth of that of the substrate. Meanwhile, the coating exhibits the best corrosion resistance in the liquid PbBi.

Key wordsflame spraying    laser in-situ synthesis technology    Al2O3-TiO2 composite ceramic coating    microstructure    property
收稿日期: 2016-09-10      出版日期: 2018-02-01
中图分类号:  TG174.4  
基金资助:国家自然科学基金重大研究计划(91326114);湖南省高校重点实验室(湘财教指[2014]85号);湖南省高校科技创新团队支持计划(湘教通[2012]318号);湖南省重点学科建设项目(湘教发[2011]76号)
通讯作者: 邱长军     E-mail: qiuchangjun@hotmail.com
作者简介: 邱长军(1965-), 男, 教授, 博士, 从事金属材料表面改性技术方面的研究, 联系地址:湖南省衡阳市蒸湘区常胜西路28号南华大学机械工程学院(421001), E-mail: qiuchangjun@hotmail.com
引用本文:   
张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
Man-li ZHANG, Chang-jun QIU, Yan-lin JIANG, Wen-quan ZHENG, Yan XIA. Microstructure and Properties of Laser In-situ Synthesized Al2O3-TiO2 Composite Ceramic Coating. Journal of Materials Engineering, 2018, 46(2): 57-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001453      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/57
Fig.1  静态铅铋腐蚀实验装置示意图
Fig.2  Al2O3-TiO2复合陶瓷涂层试样表面形貌(a)与EDS能谱分析结果(b)
Fig.3  Al2O3-TiO2复合陶瓷涂层试样截面组织形貌(SEM)
(a)涂层截面整体形貌;(b)涂层区上部;(c)涂层区中部;(d)涂层底部与基体结合界面
Fig.4  对应图 3(b)中黑色(a)和灰白色(b)组织能谱分析
Fig.5  Al2O3-TiO2复合陶瓷涂层TEM图
(a)涂层区高分辨TEM图; (b),(c),(d)分别为A区域、B区域和C区域的高分辨TEM图
Fig.6  复合陶瓷涂层的XRD图谱
Oxide Oxidation reaction process Gibbs free energy/(kJ·mol-1)
Cr2O3 Cr(s)+O2=Cr2O3(s) ΔrGCr2O3Θ=-746800+170.3T=-440.3
Fe2O3 Fe(s)+O2=Fe2O3(s) ΔrGFe2O3Θ=-540600+170.3T=-234.1
Al2O3 Al(s)+O2=Al2O3(s) ΔrGAl2O3Θ=-11205000+211.2T=-740.3
TiO2 Ti(s)+O2=TiO2(s) ΔrGTiO2Θ=-943500+179.1T=-621.1
Table 1  标准吉布斯自由能对照表(T=1800K左右)
Fig.7  Al2O3-TiO2复合陶瓷涂层截面显微硬度曲线
Fig.8  基体CLAM钢与Al2O3-TiO2复合陶瓷涂层的磨损量
Fig.9  基体(a)与Al2O3-TiO2复合陶瓷涂层(b)的磨损形貌
Fig.10  基体CLAM钢(a)和Al2O3-TiO2复合陶瓷涂层样品(b)腐蚀后SEM形貌
AreaCLAM V
Pb Bi Pb Bi
A 1.09 2.21
B 0.79 0.77
C 0.71
D 0.67
E 0.29
F
Table 2  图 10中各标记区域Pb,Bi元素含量(质量分数/%)
Fig.11  样品中Pb元素随腐蚀时间的扩散深度
1 詹文龙, 徐瑚珊. 未来先进核裂变能-ADS嬗变系统[J]. 中国科学院院刊, 2012, 27 (3): 375- 381.
1 ZHAN W L , XU H S . Advanced fission energy program-ADS transmutation system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27 (3): 375- 381.
2 赵志祥, 夏海鸿, 史永谦, 等. 加速器驱动次临界嬗变系统(ADS)研究进展[J]. 中国核科学技术进展报告, 2009, 1, 1- 8.
2 ZHAO Z X , XIA H H , SHI Y Q , et al. Research progress for accelerator driven sub-critical transmutation system(ADS)[J]. Progress Report on China Nuclear Science and Technology, 2009, 1, 1- 8.
3 KURATA Y J , YOKOTA H , SUZUKI T . Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead-bismuth[J]. Journal of Nuclear Materials, 2012, 424, 237- 246.
doi: 10.1016/j.jnucmat.2012.03.018
4 SERRE I P , DIOP I , DAVID N , et al. Mechanical behavior of coated T91 steel in contact with lead-bismuth liquid alloy at 300℃[J]. Surface and Coatings Technology, 2011, 205, 4521- 4527.
doi: 10.1016/j.surfcoat.2011.03.089
5 栗卓新, 祝弘滨, 李辉, 等. 热喷涂金属陶瓷复合涂层研究进展[J]. 材料工程, 2012, (5): 93- 98.
5 LI Z X , ZHU H B , LI H , et al. Progress of thermal spray cermet coatings[J]. Journal of Materials Engineering, 2012, (5): 93- 98.
6 王东生, 田宗军, 陈志勇, 等. TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J]. 材料工程, 2009, (7): 72- 78.
6 WANG D S , TIAN Z J , CHEN Z Y , et al. Study on laser remelting MCrAlY coatings prepared by plasma spraying on TiAl alloy surface[J]. Journal of Materials Engineering, 2009, (7): 72- 78.
7 祝弘滨, 李辉, 栗卓新. 热喷涂TiB2-Ni复合涂层组织结构和力学性能[J]. 焊接学报, 2014, 35 (11): 43- 47.
7 ZHU H B , LI H , LI Z X . Microstructure and mechanical properties of TiB2-Ni composite coating[J]. Transactions of the China Welding Institution, 2014, 35 (11): 43- 47.
8 林英华, 雷永平, 符寒光, 等. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50 (12): 1513- 1519.
doi: 10.11900/0412.1961.2014.00185
8 LIN Y H , LEI Y P , FU H G , et al. Laser in situ synthesized titanium diboride and nitinol reinforce titanium matrix composite coatings[J]. Acta Metallurgica Sinica, 2014, 50 (12): 1513- 1519.
doi: 10.11900/0412.1961.2014.00185
9 张晓伟, 刘洪喜, 蒋业华, 等. 激光原位合成TiN/Ti3Al基复合涂层[J]. 金属学报, 2011, 47 (8): 1086- 1093.
9 ZHANG X W , LIU H X , JIANG Y H , et al. Laser in situ synthesized TiN/Ti3Al composite coatings[J]. Acta Metallurgica Sinica, 2011, 47 (8): 1086- 1093.
10 SHRAVANA K , NANA A , SOUNDARAPANDIAN S , et al. Laser in-situ synthesis of TiB2-Al composite coating for improved wear performance[J]. Surface and Coatings Technology, 2013, 236, 200- 206.
doi: 10.1016/j.surfcoat.2013.09.047
11 高雪松. 基于激光熔覆技术制备高结合强度陶瓷涂层的基础研究[D]. 南京: 南京航空航天大学, 2010.
11 GAO X S. The basic research on high bonding strength of ceramic coatings fabricated by laser cladding[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
12 张来启, 张少杰, 曾红杰, 等. 喷砂预处理对HVOF喷涂TiAl-Nb/NiCrAl涂层结合强度的影响[J]. 材料热处理学报, 2011, 32 (12): 105- 109.
12 ZHANG L Q , ZHANG S J , ZENG H J , et al. Effect of grit blasting pre-treatment on bond strength of TiAl-Nb/NiCrAl coatings sprayed by high velocity oxyfuel[J]. Transactions of Materials and Heat Treatment, 2011, 32 (12): 105- 109.
13 张曼莉, 郑文权, 邱长军, 等. 激光原位制备Cr-Fe-Al-Ti复合涂层[J]. 金属热处理, 2015, 40 (3): 19- 22.
13 ZHANG M L , ZHENG W Q , QIU C J , et al. Laser in situ synthesized Cr-Fe-Al-Ti composite coating[J]. Heat Treatment of Metals, 2015, 40 (3): 19- 22.
14 钱建刚, 张家祥, 李淑青, 等. 镁合金表面等离子喷涂Al涂层及激光重熔研究[J]. 稀有金属材料与工程, 2012, 41 (2): 360- 363.
14 QIAN J G , ZHANG J X , LI S Q , et al. Study of plasma-sprayed Al coating on Mg alloy and laser-remelting[J]. Rare Metal Materials and Engineering, 2012, 41 (2): 360- 363.
15 王淑兰. 物理化学[M]. 北京: 冶金工业出版社, 2007: 274- 278.
15 WANG S L . Physical chemistry[M]. Beijing: Metallurgical Industry Press, 2007: 274- 278.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 陈小龙, 李文生, 娄明, 徐凯, 陈雷雷, 常可可. Fe-Ni基合金设计中前过渡族元素对结构与性能的影响[J]. 材料工程, 2022, 50(9): 32-42.
[3] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[4] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[5] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[6] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[7] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[8] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[9] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[10] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[11] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[12] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[13] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[14] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[15] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn