Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 57-65    DOI: 10.11868/j.issn.1001-4381.2016.001453
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能
张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰
南华大学 机械工程学院, 湖南 衡阳 421001
Microstructure and Properties of Laser In-situ Synthesized Al2O3-TiO2 Composite Ceramic Coating
ZHANG Man-li, QIU Chang-jun, JIANG Yan-lin, ZHENG Wen-quan, XIA Yan
School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan, China
全文: PDF(4994 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 先利用火焰喷涂技术在中国低活化马氏体钢表面制备了CrFeAlTi涂层,然后通过激光原位反应技术在火焰喷涂涂层表面原位合成了Al2O3-TiO2复合陶瓷涂层。分别采用体视显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、显微硬度计、立式万能摩擦磨损试验机以及静态铅铋腐蚀实验装置等分析测试手段对涂层的形貌、微观组织结构、物相组成、显微硬度、干滑动摩擦磨损性能以及耐液态铅铋合金腐蚀性能等进行了研究。实验结果表明:激光原位合成的Al2O3-TiO2复合陶瓷涂层表面整体平整、光滑、致密,基本没有凹坑、裂纹和孔隙等缺陷,与基体之间形成了良好的冶金结合。涂层内部存在完全结晶区和非结晶区,且界面明显。涂层表面主要物相为Al2O3,TiO2,(Al.948Cr.052)2O3,Fe2TiO5和FeCr等。涂层截面平均显微硬度约为1864.2HV0.2,比基体CLAM钢提高了约3倍,且沿横截面方向呈平稳过渡的阶梯状分布。与基体CLAM钢相比,涂层具有良好的耐磨性能,其磨损量仅为基体的1/6,并且涂层在液态铅铋中表现出良好的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张曼莉
邱长军
蒋艳林
郑文权
夏琰
关键词 火焰喷涂激光原位合成技术Al2O3-TiO2复合陶瓷涂层微观组织结构性能    
Abstract:The study involves in-situ synthesis of CrFeAlTi composite coating using laser micro-melting processing. The coating was successfully prepared by laser irradiating CrFeAlTi coating prepared by flame spraying on the China low activation martensitic (CLAM) steel substrate, and then Al2O3-TiO2 composite ceramic coating was synthesized by in-situ reaction on the surface of flame sprayed coating. The coating morphology, microstructure, phase composition, micro-hardness, dry sliding wear properties and corrosion resistance in liquid PbBi alloy were analyzed by stereomicroscope, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), micro-sclerometer, vertical universal friction wear testing machine and static PbBi corrosion test device, respectively. The test results show that the surface of Al2O3-TiO2 composite ceramic coating is smooth, and the microstructure of coating is both homogeneous and dense without defects such as crack, dimple and porosity, etc., a good metallurgical bonding between the composite ceramic coating and the substrate, and the interface is obvious. The phases of the coating surface are mainly composed of Al2O3, TiO2, (Al.948Cr.052)2O3, Fe2TiO5 and FeCr, etc. The coating shows a high average micro-hardness of approximately 1864.2HV0.2, which is about three times higher than that of the CLAM steel substrate, and presents gradient distribution with stable transition from the coating surface to the substrate. Comparing with the substrate, the coating presents excellent wear resistance. The wear mass loss of the coating is just one sixth of that of the substrate. Meanwhile, the coating exhibits the best corrosion resistance in the liquid PbBi.
Key wordsflame spraying    laser in-situ synthesis technology    Al2O3-TiO2 composite ceramic coating    microstructure    property
收稿日期: 2016-09-10      出版日期: 2018-02-01
中图分类号:  TG174.4  
通讯作者: 邱长军(1965-),男,教授,博士,从事金属材料表面改性技术方面的研究,联系地址:湖南省衡阳市蒸湘区常胜西路28号南华大学机械工程学院(421001),qiuchangjun@hotmail.com     E-mail: qiuchangjun@hotmail.com
引用本文:   
张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
ZHANG Man-li, QIU Chang-jun, JIANG Yan-lin, ZHENG Wen-quan, XIA Yan. Microstructure and Properties of Laser In-situ Synthesized Al2O3-TiO2 Composite Ceramic Coating. Journal of Materials Engineering, 2018, 46(2): 57-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001453      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/57
[1] 詹文龙,徐瑚珊.未来先进核裂变能-ADS嬗变系统[J].中国科学院院刊,2012,27(3):375-381. ZHAN W L,XU H S.Advanced fission energy program-ADS transmutation system[J].Bulletin of Chinese Academy of Sciences,2012,27(3):375-381.
[2] 赵志祥,夏海鸿,史永谦,等.加速器驱动次临界嬗变系统(ADS)研究进展[J].中国核科学技术进展报告,2009,1:1-8. ZHAO Z X,XIA H H,SHI Y Q, et al.Research progress for accelerator driven sub-critical transmutation system(ADS)[J].Progress Report on China Nuclear Science and Technology,2009,1:1-8.
[3] KURATA Y J,YOKOTA H,SUZUKI T.Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead-bismuth[J].Journal of Nuclear Materials,2012,424:237-246.
[4] SERRE I P,DIOP I,DAVID N,et al.Mechanical behavior of coated T91 steel in contact with lead-bismuth liquid alloy at 300℃[J].Surface and Coatings Technology,2011,205:4521-4527.
[5] 栗卓新,祝弘滨,李辉,等.热喷涂金属陶瓷复合涂层研究进展[J].材料工程,2012,(5):93-98. LI Z X,ZHU H B,LI H,et al.Progress of thermal spray cermet coatings[J].Journal of Materials Engineering,2012,(5):93-98.
[6] 王东生,田宗军,陈志勇,等.TiAl合金表面激光重熔等离子喷涂MCrAlY涂层研究[J].材料工程,2009,(7):72-78. WANG D S,TIAN Z J,CHEN Z Y,et al.Study on laser remelting MCrAlY coatings prepared by plasma spraying on TiAl alloy surface[J].Journal of Materials Engineering,2009,(7):72-78.
[7] 祝弘滨,李辉,栗卓新.热喷涂TiB2-Ni复合涂层组织结构和力学性能[J].焊接学报,2014,35(11):43-47. ZHU H B,LI H,LI Z X.Microstructure and mechanical properties of TiB2-Ni composite coating[J].Transactions of the China Welding Institution,2014,35(11):43-47.
[8] 林英华,雷永平,符寒光,等.激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J].金属学报,2014,50(12):1513-1519. LIN Y H,LEI Y P,FU H G,et al.Laser in situ synthesized titanium diboride and nitinol reinforce titanium matrix composite coatings[J].Acta Metallurgica Sinica,2014,50(12):1513-1519.
[9] 张晓伟,刘洪喜,蒋业华,等.激光原位合成TiN/Ti3Al基复合涂层[J].金属学报,2011,47(8):1086-1093. ZHANG X W,LIU H X,JIANG Y H,et al.Laser in situ synthesized TiN/Ti3Al composite coatings[J].Acta Metallurgica Sinica,2011,47(8):1086-1093.
[10] SHRAVANA K,NANA A,SOUNDARAPANDIAN S,et al.Laser in-situ synthesis of TiB2-Al composite coating for improved wear performance[J].Surface and Coatings Technology,2013,236:200-206.
[11] 高雪松.基于激光熔覆技术制备高结合强度陶瓷涂层的基础研究[D].南京:南京航空航天大学,2010. GAO X S.The basic research on high bonding strength of ceramic coatings fabricated by laser cladding[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010.
[12] 张来启,张少杰,曾红杰,等.喷砂预处理对HVOF喷涂TiAl-Nb/NiCrAl涂层结合强度的影响[J].材料热处理学报,2011,32(12):105-109. ZHANG L Q,ZHANG S J,ZENG H J,et al.Effect of grit blasting pre-treatment on bond strength of TiAl-Nb/NiCrAl coatings sprayed by high velocity oxyfuel[J].Transactions of Materials and Heat Treatment,2011,32(12):105-109.
[13] 张曼莉,郑文权,邱长军,等.激光原位制备Cr-Fe-Al-Ti复合涂层[J].金属热处理,2015,40(3):19-22. ZHANG M L,ZHENG W Q,QIU C J, et al.Laser in situ synthesized Cr-Fe-Al-Ti composite coating[J].Heat Treatment of Metals,2015,40(3):19-22.
[14] 钱建刚,张家祥,李淑青,等.镁合金表面等离子喷涂Al涂层及激光重熔研究[J].稀有金属材料与工程,2012,41(2):360-363. QIAN J G,ZHANG J X,LI S Q,et al.Study of plasma-sprayed Al coating on Mg alloy and laser-remelting[J].Rare Metal Materials and Engineering,2012,41(2):360-363.
[15] 王淑兰.物理化学[M].北京:冶金工业出版社,2007:274-278. WANG S L.Physical chemistry[M].Beijing:Metallurgical Industry Press,2007:274-278.
[1] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[2] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[3] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[6] 曾凡达, 李纲. 花状CdO微球的制备及其对高氯酸铵热分解的催化性能[J]. 材料工程, 2020, 48(6): 91-97.
[7] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[8] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[9] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[10] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[11] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[12] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[13] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[14] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[15] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn