Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 27-33    DOI: 10.11868/j.issn.1001-4381.2016.001508
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响
刘伟, 熊华平, 李能, 陈波
中国航发北京航空材料研究院 焊接与塑性成形研究所, 北京 100095
Effect of Preparation Process on Microstructure of Nb-16Si Binary Alloys Fabricated by Laser Melting Deposition
LIU Wei, XIONG Hua-ping, LI Neng, CHEN Bo
Welding and Plastic Forming Division, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4660 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以纯Nb粉末、纯Si粉末或Nb5Si3粉末为原料,采用预置粉末法和双通道同轴送粉法,通过激光熔化沉积(LMD)技术制备3种Nb-16Si二元合金。使用SEM,EDS和XRD等手段分析合金的显微组织特征。结果表明:LMD制备的Nb-16Si合金均由NbSS和Nb3Si两相组成。原料粉末的堆叠方式和化学状态强烈影响合金的显微组织。以纯元素粉末为原料,预置粉末法制备的Nb-16Si合金,由尺寸约1~5μm的枝晶状初生NbSS和NbSS/Nb3Si共晶组织组成,合金显微硬度约773HV;双通道同轴送粉法促使显微组织细小均匀化,合金中初生NbSS相呈近等轴状均匀分布,平均尺寸仅约2μm,合金硬度提高至817HV;以Nb+Nb5Si3粉末为原料,双通道同轴送粉法制备的Nb-16Si合金呈伪共晶组织,其显微硬度高达907HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟
熊华平
李能
陈波
关键词 激光熔化沉积Nb-16Si合金预置粉末同轴送粉显微组织    
Abstract:The pure Nb powder, Si powder or Nb5Si3 powder were used as raw materials and three kinds of Nb-16Si binary alloys were fabricated by laser melting deposition (LMD) via the method of powder preplaced and coaxial powder feeding, respectively. The microstructure and micro-hardness of these alloys were investigated with SEM, EDS and XRD, etc. The results show that these Nb-16Si alloys prepared by LMD consist of NbSS and Nb3Si phases. The microstructure of these alloys is influenced by the feeding method and chemical state of the raw powder strongly. The Nb-16Si alloy fabricated by powder preplaced method with the pure element powder as raw materials is composed of dendritic primary NbSS with the size of 1-5μm and NbSS/Nb3Si eutectic structure and the Vickers micro-hardness of the alloy is about 773HV. Using the method of dual-channel coaxial powder feeding can make the microstructure of the Nb-16Si alloy finer and more homogeneous. The primary NbSS in this alloy is uniformly distributed with nearly equiaxed shape, the average size is only 2μm and its micro-hardness is increased to 817HV. The microstructure of the Nb-16Si alloy prepared by dual-channel coaxial powder feeding method with pure Nb and Nb5Si3 as raw powder exhibits pseudoeutectic structure, the micro-hardness reaches 907HV.
Key wordslaser melting deposition    Nb-16Si alloy    powder preplaced    coaxial powder feeding    microstructure
收稿日期: 2016-12-16      出版日期: 2018-02-01
中图分类号:  TG132.3+2  
  TP391.7  
通讯作者: 熊华平(1969-),男,研究员,博士,现主要研究航空材料钎焊扩散焊及新型材料增材制造技术,联系地址:北京市海淀区温泉镇环山村8号北京航空材料研究院(100095),xionghuaping69@sina.cn     E-mail: xionghuaping69@sina.cn
引用本文:   
刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
LIU Wei, XIONG Hua-ping, LI Neng, CHEN Bo. Effect of Preparation Process on Microstructure of Nb-16Si Binary Alloys Fabricated by Laser Melting Deposition. Journal of Materials Engineering, 2018, 46(2): 27-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001508      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/27
[1] BEWLAY B P, LIPSITT H A, JACKSON M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys[J]. Materials Science and Engineering:A, 1995, 192:534-543.
[2] MURAYAMA Y, HANADA S, OBARA K. Effect of strain rate on the high-temperature deformation behavior of Nb3Al hipped from prealloyed powder[J]. JIM, 1996, 37(7):1388-1396.
[3] 赵东阳,刘伟,沙江波. 放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能[J]. 材料工程, 2015, 43(10):20-27. ZHAO D Y, LIU W, SHA J B. Microstructure and properties of Nb-Si-Ti-Al-Hf-Cr alloys fabricated by spark plasma sintering[J]. Journal of Materials Engineering, 2015, 43(10):20-27.
[4] BEWLAY B P, LEWANDOWKSI J J, JACKSON M R. Refractory metal-intermetallic in-situ composites for aircraft engines[J]. JOM, 1997, 49(8):44-45.
[5] 张爱军, 韩杰胜, 马文林, 等. Nb-Si超高温材料的放电等离子烧结(SPS)工艺研究[J]. 材料工程, 2016, 44(3):1-8. ZHANG A J, HAN J S, MA W L, et al. Spark plasma sintering process for Nb-Si ultra-high temperature materials[J]. Journal of Materials Engineering, 2016, 44(3):1-8.
[6] KIM J H, TABARU T, HIRAI H, et al. Tensile properties of a refractory metal base in situ composite consisting of an Nb solid solution and hexagonal Nb5Si3[J]. Scripta Materialia, 2003, 48(10):1439-1444.
[7] KANG Y, QU S, SONG J, et al. Microstructure and mechanical properties of Nb-Ti-Si-Al-Hf-xCr-yV multi-element in situ composite[J]. Materials Science and Engineering:A, 2012, 534:323-328.
[8] LI X, CHEN H, SHA J, et al. The effects of melting technologies on the microstructures and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. Materials Science and Engineering:A, 2010, 527(23):6140-6152.
[9] JIA L, GE J, SHA J, et al. Effects of cooling rate and pouring temperature on microstructure and fracture toughness of the induction melted Nb-16Si-22Ti-2Hf-2Cr-2Al alloy[J]. International Journal of Modern Physics B, 2010, 24(15/16):2946-2951.
[10] BEWLAY B P, JACKSON M R, ZHAO J C, et al. Ultrahigh-temperature Nb-silicide-based composites[J]. MRS Bulletin, 2003, 28(9):646-653.
[11] 郭海生,郭喜平,赵鸿磊. Nb-Si基高温合金定向凝固制备技术的研究进展[J]. 稀有金属材料与工程,2014, 43(4):1019-1024. GUO H S, GUO X P, ZHAO H L. Research progress in directional solidification of Nb-Si based high temperature alloys[J]. Rare Metal Materials and Engineering, 2014, 43(4):1019-1024.
[12] LIU W, SHA J B. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16 Si-based alloys prepared via spark plasma sintering[J]. Materials & Design, 2016, 111:301-311.
[13] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2):122-128. ZHANG X J, TANG S Y, ZHAO H Y, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128.
[14] DICKS R, WANG F, WU X. The manufacture of a niobium/niobium-silicide-based alloy using direct laser fabrication[J]. Journal of Materials Processing Technology, 2009, 209(4):1752-1757.
[15] 梁京,陈岁元,刘常升,等. 激光熔覆多层Nb-Si-Ti显微组织[J]. 东北大学学报(自然科学版),2014, 35(12):1710-1714. LIANG J, CHEN S Y, LIU C S, et al. Microstructure of laser cladding multi-layer Nb-Si-Ti[J]. Journal of Northeastern University (Natural Science Edition), 2014, 35(12):1710-1714.
[16] 李胜男,熊华平,陈冰清,等. 激光3D打印方法制备Nb/SiC体系梯度材料的微观组织及反应机理[J]. 焊接学报, 2016, 37(2):1-4. LI S N, XIONG H P, CHEN B Q, et al. Microstructure of Nb/SiC system gradient material fabricated by laser 3D printing method and reaction mechanism[J]. Transactions of the China Welding Institution, 2016, 37(2):1-4.
[17] MASSALSKI T B. Binary alloy phase diagrams[M]. OH:American Society for Metals, 1986.
[18] TIAN Y X, GUO J T, ZHOU L Z, et al. Microstructure and room temperature fracture toughness of cast NbSS/silicides composites alloyed with Hf[J]. Materials Letters, 2008, 62(17):2657-2660.
[19] 顾冬冬, 沈以赴. 微/纳米Cu-W粉末激光烧结体的显微组织[J]. 金属学报, 2009, 45(1):113-118. GU D D, SHEN Y F. Microstructures of laser sintered micron/nano-sized Cu-W powder[J]. Acta Metallurgical Sinica, 2009, 45(1):113-118.
[20] FISCHER P, ROMANO V, WEBER H P, et al. Sintering of commercially pure titanium powder with a Nd:YAG laser source[J]. Acta Materialia, 2003, 51(6):1651-1662.
[21] 杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社, 1998. YANG S M, TAO W Q. Heat transfer[M]. Beijing:Higher Education Press, 1998.
[22] MENDIRATTA M G, DIMIDUK D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system[J].Scripta Metallurgica et Materialia,1991,25(1):237-242.
[1] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[2] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[3] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[6] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[7] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[8] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[9] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[10] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[11] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[12] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[13] 倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
[14] 郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
[15] 王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn