Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 53-60    DOI: 10.11868/j.issn.1001-4381.2016.001540
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯的制备及其对环氧树脂导电性能的影响
乔栩, 林治, 林晓丹
华南理工大学 材料科学与工程学院, 广州 510640
Preparation of Graphene and Its Effect on Conductivity Epoxy Resin
QIAO Xu, LIN Zhi, LIN Xiao-dan
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(4574 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用硼氢化钠(NaBH4)水溶液对一阶FeCl3插层石墨层间化合物(Graphite Intercalation Compound,GIC)进行膨胀剥离制备了高质量石墨烯,并由此制备了石墨烯/环氧树脂复合材料。结果表明:通过适当的无水氯化铁和天然鳞片石墨质量比,在330℃的条件下制备了FeCl3-GIC层间化合物。XRD和扫描电镜数据显示,石墨插层化合物的层间距从天然鳞片石墨的0.335nm增加到0.930nm,证明该层间化合物为一阶FeCl3-GIC。利用透射电子显微镜、拉曼光谱、傅里叶红外仪、X射线光电子能谱分析仪对石墨烯进行表征,表明成功制备了少数层或单层石墨烯,所得石墨烯结构缺陷较小,其ID/IG为0.09,C/O为40.80,对比天然鳞片石墨的ID/IG(0.17),说明NaBH4膨胀剥离的石墨插层化合物时,对天然鳞片石墨存在的结构缺陷进行了一定程度的修复。天然鳞片石墨的傅里叶红外谱图中存在C=O(1735cm-1),环氧结构C-O(1228cm-1)特征峰,而相对应的峰位置石墨烯没有官能团特征峰表现出来,表明硼氢化钠产生的氢成功还原石墨中的氧使石墨结构更完善。以该高质量石墨烯与环氧树脂制备的复合材料的导电性能随石墨烯含量的增加逐渐增强,体积电阻率从纯环氧树脂的1.95×1013Ω·cm降低到石墨烯体积分数为3.70%时的3.41×105Ω·cm,材料的导电性提高了8个数量级;材料断面形貌的SEM照片表明石墨烯与环氧树脂存在一定的不相容性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔栩
林治
林晓丹
关键词 石墨烯超共轭结构石墨层间化合物环氧树脂体积电阻率    
Abstract:High quality graphene and its epoxy composites were prepared by exfoliation of first stage FeCl3-GICs with sodium borohydride (NaBH4) aqueous solution, followed by compounding with epoxy resin. First stage FeCl3-GICs were prepared by compounding anhydrous FeCl3 and graphite at 330℃. XRD analysis and scanning electron microscopy data show that the interlayer spacing of graphite intercalation compounds is increased from 0.335nm to 0.930nm,indicates first stage FeCl3-GIC is obtained. Transmission electron microscopy shows single layer grapheme is made. Raman spectroscopy and XPS data show that the graphene's ID/IG=0.09,C/O=40.80, comparing that of flake graphite's ID/IG=0.17 and FTIR spectra, suggesting that NaBH4 exfoliation can simultaneously repair the structural defects of flake graphite. Characteristic peaks of C=O(1735cm-1),C-O(1228cm-1)are found in FTIR spectra of flake graphite, while no functional groups characteristic peaks of graphene shows up in the corresponding locations, indicating that hydrogen produced by sodium borohydride successfully reduces oxygen from graphite makes the graphite more complete structure. The conductivity of composites gradually increases with the increase of graphene content, and the volume resistivity decreases from the pure epoxy resin of 1.95×1013Ω·cm to 3.41×105Ω·cm when the volume fraction is 3.70%. The conductivity of the composites increases by 8 orders of magnitude.SEM images of fracture morphology shows some incompatibility exists between graphene and epoxy resin.
Key wordsgraphene    super conjugated structure    graphite intercalation compound    epoxy resin    volume resistivity
收稿日期: 2016-12-21      出版日期: 2018-07-20
中图分类号:  TB332  
通讯作者: 林晓丹(1964-),男,副研究员,博士,主要从事高分子材料的结构与性能研究、阻燃机理研究等,联系地址:广东省广州市天河区华南理工大学五山校区25号楼(唯美楼)242室(510641),E-mail:mcxdlin@scut.edu.cn     E-mail: mcxdlin@scut.edu.cn
引用本文:   
乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
QIAO Xu, LIN Zhi, LIN Xiao-dan. Preparation of Graphene and Its Effect on Conductivity Epoxy Resin. Journal of Materials Engineering, 2018, 46(7): 53-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001540      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/53
[1] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9/10):351-355.
[2] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8(3):902-907.
[3] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
[4] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308.
[5] 杨文彬,张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43(3):91-97. YANG W B, ZHANG L, LIU J W, et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43(3):91-97.
[6] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230):706-710.
[7] LI N, WANG Z Y, ZHAO K K, et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48(1):255-259.
[8] BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52):19912-19916.
[9] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKⅡ A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872-875.
[10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[11] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3(9):563-568.
[12] SHIN H J, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Adv Funct Mater, 2009, 19(12):1987-1992.
[13] 王艳春, 曾效舒, 敖志强, 等热还原石墨烯的制备及其对重金属Pb2+的吸附性[J]. 材料工程, 2017, 45(10):6-11. WANG Y C, ZENG X S, AO Z Q, et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavy metal Pb2+[J]. Journal of Materials Engineering, 2017, 45(10):6-11.
[14] PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9):3210-3228.
[15] ENGLERT J M, DOTZER C, YANG G A, et al. Covalent bulk functionalization of graphene[J]. Nat Chem, 2011, 3(4):279-286.
[16] FU W J, KIGGANS J, OVERBURY S H, et al. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound[J]. Chem Commun, 2011, 47(18):5265-5267.
[17] GENG X M, GUO Y F, LI D F, et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene[J]. Sci Rep, 2013, 3:1134.doi:10.1038/srep01134.
[18] WANG G, DAI J, MA L. Influence of graphene prepared by chemical method on epoxy resin electric conductivity[J]. J Tongji Univ(Nat Sci), 2014, 42(9):1377-1383.
[19] DRESSELHAUS M S, DRESSELHAUS G. Intercalation compounds of graphite[J]. Adv Phys, 2002, 51(1):1-186.
[20] FERRARI A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143(1/2):47-57.
[21] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol, 2013, 8(4):235-246.
[22] 杨真真, 郑庆彬, 邱汉迅, 等. CaCl2催化NaBH4还原氧化石墨烯[J]. 新型炭材料, 2015,30(1):41-47. YANG Z Z, ZHENG Q B, QIU H X, et al. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. New Carbon Materials, 2015, 30(1):41-47.
[23] MARCQ F, DEMONT P, MONFRAIX P, et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives[J]. Microelectronics Reliability, 2011, 51(7):1230-1234.
[24] MENG Q S, WU H, ZHAO Z H, et al. Free-standing, flexible, electrically conductive epoxy/graphene composite films[J]. Compos Pt A-Appl Sci Manuf, 2017, 92:42-50.
[25] WAJID A S, AHMED H S T, DAS S, et al. High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties[J]. Macromol Mater Eng, 2013, 298(3):339-347.
[26] ZAMAN I, KUAN H C, MENG Q S, et al. A facile approach to chemically modified graphene and its polymer nanocomposites[J]. Adv Funct Mater, 2012, 22(13):2735-2743.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[3] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[4] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[5] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[6] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[7] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[8] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[9] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[10] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[11] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[12] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[13] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[14] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[15] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn