Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (8): 1-10    DOI: 10.11868/j.issn.1001-4381.2016.08.001
  论文 本期目录 | 过刊浏览 | 高级检索 |
航空发动机用先进高温钛合金材料技术研究与发展
蔡建明, 弭光宝(), 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓
北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095
Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine
Jian-ming CAI, Guang-bao MI(), Fan GAO, Hao HUANG, Jing-xia CAO, Xu HUANG, Chun-xiao CAO
Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3594 KB)   HTML ( 52 )  
输出: BibTeX | EndNote (RIS)      
摘要 

新一代高推重比航空发动机压气机和涡轮系统高温环境使用的叶片、盘、机匣、整体叶盘和整体叶环等构件设计通常选用先进高温钛合金材料。本文综述近年来我国600℃高温钛合金、阻燃钛合金、TiAl合金、连续SiC纤维增强钛基复合材料及其应用技术取得的最新研究进展,并提出材料及构件设计、加工和使用亟待突破的关键技术,包括工业铸锭成分高纯化和均匀化控制技术、大规格棒材及特殊锻件制备技术、整体叶盘和整体叶环零件机械加工技术、材料性能评价及应用设计技术等。先进高温钛合金材料的不断应用将有力推动我国航空发动机技术发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡建明
弭光宝
高帆
黄浩
曹京霞
黄旭
曹春晓
关键词 先进航空发动机600℃高温钛合金阻燃钛合金TiAl合金SiC纤维增强钛基复合材料钛火    
Abstract

Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

Key wordsadvanced aero-engine    600℃high temperature titanium alloy    fireproof titanium alloy    TiAl alloy    SiC fiber reinforced titanium matrix composite    titanium fire
收稿日期: 2016-04-15      出版日期: 2016-08-23
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51471155);中航工业技术创新基金资助项目(2014E62149R)
通讯作者: 弭光宝     E-mail: miguangbao@163.com
作者简介: 弭光宝(1981-), 男, 高级工程师, 博士, 主要从事高温钛合金及阻燃性能等方面研究, 联系地址:北京市海淀区温泉镇环山村8号北京航空材料研究院先进钛合金航空科技重点实验室(100095), miguangbao@163.com
引用本文:   
蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
Jian-ming CAI, Guang-bao MI, Fan GAO, Hao HUANG, Jing-xia CAO, Xu HUANG, Chun-xiao CAO. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine. Journal of Materials Engineering, 2016, 44(8): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/1
Long-time service temperature/℃ Alloy
≤400 TC4,TC17,TC19
≤450 TC6,TA11
≤500 TC11,TA7,TA15,TB12
≤550 TA19,TA32,TC25,TF550
≤600 TA29,TA33
≤700 TD3,Ti2AlNb
700-850 TiAl
600-800 SiCf/Ti composite
Table 1  我国航空发动机在役和在研的主要高温钛合金
Fig.1  TA29钛合金整体叶盘锻件  (a)Ⅰ型[8]; (b)Ⅱ型
Fig.2  TA29钛合金整体叶盘零件  (a)Ⅰ型; (b)Ⅱ型
Fig.3  TB12阻燃钛合金包套挤压棒材
Fig.4  阻燃钛合金压气机机匣锻件  (a)TB12合金环锻件; (b)TF550合金半环锻件
Fig.5  采用摩擦氧浓度法测定TB12和TF550合金阻燃性能[17]
Fig.6  TiAl合金挤压棒  (a)圆棒; (b)方棒
Fig.7  TiAl合金高压压气机转子叶片等温锻件
Fig.8  TiAl合金高压压气机转子叶片零件
Fig.9  整体叶环部件及超声波探伤C扫描图
(a)φ250mm×70mm叶环; (b)φ604mm×160mm叶环; (c)φ604mm×160mm叶环超声波探伤C扫描
1 WILLIAMS J C . Alternate materials choices-some challenges to the increased use of Ti alloys[J]. Materials Science and Engineering:A, 1999, 263 (2): 107- 111.
doi: 10.1016/S0921-5093(98)01179-4
2 LEYENS C , KOCIAN F , HAUSMANN J , et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003, 7 (3): 201- 210.
doi: 10.1016/S1270-9638(02)00013-5
3 陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009, (3): 45- 47.
3 CHEN G . Frequent Ti-alloy fired accidents[J]. International Aviation, 2009, (3): 45- 47.
4 江和甫, 古远兴, 卿华. 航空发动机的新结构及其强度设计[J]. 燃气涡轮试验与研究, 2007, 20 (2): 1- 4.
4 JIANG H F , GU Y X , QING H . New structure and strength design of aero——engine[J]. Gas Turbine Experiment and Research, 2007, 20 (2): 1- 4.
5 ALBRECHT J . Comparing fatigue behavior of titanium and nickel-based alloys[J]. Materials Science and Engineering:A, 1999, 263 (2): 176- 186.
doi: 10.1016/S0921-5093(98)01176-9
6 DAEUBLER M A, HELM D.Development of high temperature Ti-base disc materials in competition to Ni-base superalloys[A].High Temperature Materials for Power Engineering[C].Liege, Belgium, 1990.1717-1726.
7 LÜTJERING G , WILLIAMS J C . Titanium[M]. New York: Springer, 2003.
8 蔡建明, 曹春晓. 新一代600℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报, 2014, 34 (4): 27- 36.
8 CAI J M , CAO C X . Alloy design and application expectation of a new generation 600℃high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34 (4): 27- 36.
9 王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34 (4): 1- 26.
9 WANG Q J , LIU J R , YANG R . High temperature titanium alloys:status and perspective[J]. Journal of Aeronautical Materials, 2014, 34 (4): 1- 26.
10 曾立英, 赵永庆, 洪权, 等. 600℃高温钛合金的研发[J]. 钛工业进展, 2012, 29 (5): 1- 5.
10 ZENG L Y , ZHAO Y Q , HONG Q , et al. Research and development of high temperature titanium alloys at 600℃[J]. Titanium Industry Progress, 2012, 29 (5): 1- 5.
11 王涛, 郭鸿镇, 张永强, 等. 热锻温度对TG6高温钛合金显微组织和力学性能的影响[J]. 金属学报, 2010, 46 (8): 913- 920.
doi: 10.3724/SP.J.1037.2010.00851
11 WANG T , GUO H Z , ZHANG Y Q , et al. Effects of hot forging temperature on microstructure and mechanical property of TG6 high temperature titanium alloy[J]. Acta Metallurgica Sinica, 2010, 46 (8): 913- 920.
doi: 10.3724/SP.J.1037.2010.00851
12 CAI J M , HUANG X , CAO C X . Thermal stability of TG6 titanium alloy and its partial resumption at high temperature[J]. Rare Metal Materials and Engineering, 2010, 39 (11): 1893- 1896.
doi: 10.1016/S1875-5372(10)60133-6
13 曹京霞, 黄旭, 弭光宝, 等. Ti-V-Cr系阻燃钛合金应用研究进展[J]. 航空材料学报, 2014, 34 (4): 92- 97.
13 CAO J X , HUANG X , MI G B , et al. Research progress on application technique of Ti-V-Cr burn resistant titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34 (4): 92- 97.
14 曹春晓. 钛合金在未来航空领域的应用前景[J]. 国际航空, 2006, (8): 59- 60.
14 CAO C X . Application prospect of titanium alloys in future aviation[J]. International Aviation, 2006, (8): 59- 60.
15 赖运金, 张平祥, 辛社伟, 等. 国内阻燃钛合金工程化技术研究进展[J]. 稀有金属材料与工程, 2015, 44 (8): 2067- 2073.
15 LAI Y J , ZHANG P X , XIN S W , et al. Research progress on engineered technology of fireproof titanium alloy in China[J]. Rare Metal Materials and Engineering, 2015, 44 (8): 2067- 2073.
16 弭光宝, 黄旭, 曹京霞, 等. Ti-V-Cr系阻燃钛合金抗点燃性能及其理论分析[J]. 金属学报, 2014, 50 (5): 575- 586.
16 MI G B , HUANG X , CAO J X , et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloy[J]. Acta Metallurgica Sinica, 2014, 50 (5): 575- 586.
17 弭光宝, 曹春晓, 黄旭, 等. Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测[J]. 材料工程, 2016, 44 (1): 1- 10.
17 MI G B , CAO C X , HUANG X , et al. Non-isothermal oxidation characteristic and fireproof property prediction of Ti-V-Cr type fireproof titanium alloy[J]. Journal of Materials Engineering, 2016, 44 (1): 1- 10.
18 弭光宝, 黄旭, 曹京霞, 等. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物组织特征[J]. 物理学报, 2016, 65 (5): 217- 226.
18 MI G B , HUANG X , CAO J X , et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Phys Sin, 2016, 65 (5): 217- 226.
19 弭光宝, 黄旭, 曹京霞, 等. 航空发动机钛火试验技术研究新进展[J]. 航空材料学报, 2016, 36 (3): 20- 26.
19 MI G B , HUANG X , CAO J X , et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2016, 36 (3): 20- 26.
20 YAMAGUCHI M , INUI H , ITO K . High-temperatures structural intermetallics[J]. Acta Materialia, 2000, 48 (1): 307- 322.
doi: 10.1016/S1359-6454(99)00301-8
21 SAUTHOFF G . Multiphase intermetallic alloys for structural applications[J]. Intermetallics, 2000, 8 (9): 1101- 1109.
22 DIMIDUK D M . Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering:A, 1999, 263 (2): 281- 288.
doi: 10.1016/S0921-5093(98)01158-7
23 张美娟, 南海, 鞠忠强, 等. 航空铸造钛合金及其成型技术发展[J]. 航空材料学报, 2016, 36 (3): 13- 19.
23 ZHANG M J , NAN H , JU Z Q , et al. Aeronautical cast Ti alloy and forming technology development[J]. Journal of Aeronautical Materials, 2016, 36 (3): 13- 19.
24 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51 (2): 129- 147.
24 YANG R . Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 2015, 51 (2): 129- 147.
25 陈玉勇, 崔宁, 孔凡涛. 变形TiAl合金研究进展[J]. 航空材料学报, 2014, 34 (4): 112- 118.
25 CHEN Y Y , CUI N , KONG F T . Progress of deformed TiAl alloys[J]. Journal of Aeronautical Materials, 2014, 34 (4): 112- 118.
26 SONG L , XU X , YOU L , et al. Ordered α2 to ωo phase transformations in high Nb-containing TiAl alloys[J]. Acta Materialia, 2015, 91, 330- 339.
doi: 10.1016/j.actamat.2015.03.025
27 高帆, 李臻熙. 大尺寸TiAl合金VAR铸锭热变形特性研究[J]. 航空制造技术, 2014, (12): 68- 73.
27 GAO F , LI Z X . Hot deformation characteristics of large scale TiAl alloy VAR ingot[J]. Aeronautical Manufacturing Technology, 2014, (12): 68- 73.
28 高帆, 李臻熙. γ-TiAl金属间化合物细晶棒材挤压变形工艺[J]. 航空制造技术, 2014, (10): 88- 93.
28 GAO F , LI Z X . Extrusion process of fine grained γ-TiAl alloy bar[J]. Aeronautical Manufacturing Technology, 2014, (10): 88- 93.
29 VAHLAS C , HALL I W , HAURIE I . Investigation of interfacial reactivity in composite materials[J]. Materials Science and Engineering:A, 1999, 259 (2): 269- 278.
doi: 10.1016/S0921-5093(98)00905-8
30 王增强, 单晨伟, 任军学, 等. 开式整体叶盘四坐标插铣开槽粗加工刀位轨迹规划[J]. 航空制造工程, 2007, (2): 94- 97.
30 WANG Z Q , SHAN C W , REN J X , et al. Generating 4-axis plunge roughing paths for open blisks[J]. Aeronautical Manufacturing Technology, 2007, (2): 94- 97.
31 BACHE M R, DIXON M, VOICE W E.Fatigue behavior of advancedα-TiAl alloys subjected to small particle impacts[A].Proceedings of the 12th World Conference on Titanium[C].Beijing:Science Press, 2011.
32 陈亚莉. GEnx发动机在材料应用上的创新[J]. 航空维修与工程, 2007, (4): 54- 56.
32 CHEN Y L . Innovation in GEnx materials application[J]. Aviation Maintenance & Engineering, 2007, (4): 54- 56.
33 李其汉. 航空发动机结构完整性研究进展[J]. 航空发动机, 2014, 40 (5): 1- 6.
33 LI Q H . Investigation progress on aeroengine structural integrity[J]. Aeroengine, 2014, 40 (5): 1- 6.
34 洪友士, 赵爱国, 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45 (7): 769- 780.
34 HONG Y S , ZHAO A G , QIAN G A . Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45 (7): 769- 780.
[1] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[2] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[3] 范爱一, 李慧中, 梁霄鹏, 陈永辉, 齐叶龙. 热变形Ti-45Al-7Nb-0.3W合金的显微组织与力学性能[J]. 材料工程, 2018, 46(7): 121-126.
[4] 蔡建明, 田丰, 刘东, 李娟, 弭光宝, 叶俊青. 600℃高温钛合金双性能整体叶盘锻件制备技术研究进展[J]. 材料工程, 2018, 46(5): 36-43.
[5] 王红卫, 朱春雷, 张继, 曹睿. 不同温度热暴露对铸造TiAl合金室温拉伸塑性的影响[J]. 材料工程, 2018, 46(12): 151-156.
[6] 朱春雷, 李胜, 张继. 有利于铸造TiAl合金增压器涡轮叶片可靠性的组织设计[J]. 材料工程, 2017, 45(6): 36-42.
[7] 弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠. Ti-V-Cr系阻燃钛合金的非等温氧化行为及阻燃性能预测[J]. 材料工程, 2016, 44(1): 1-10.
[8] 马李, 何录菊, 邵先亦, 王古平, 张梦贤. 电子束沉积TiAl合金的微观形貌及组织结构稳定性[J]. 材料工程, 2016, 44(1): 89-95.
[9] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[10] 李涌泉, 谢发勤, 吴向清, 姚小飞. 温度对TiAl合金表面Si-Al-Y共渗层组织结构的影响[J]. 材料工程, 2014, 0(6): 22-27.
[11] 焦泽辉, 宋西平, 张敏, 于慧臣. 全片层与双态组织高铌TiAl合金高温原位拉伸研究[J]. 材料工程, 2013, 0(9): 79-83,90.
[12] 赵红霞, 黄旭, 王宝, 雷力明. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响[J]. 材料工程, 2013, 0(7): 73-77.
[13] 司家勇, 李胜, 张继. 大变形量近等温锻造开坯对TiAl合金组织与性能的影响[J]. 材料工程, 2013, 0(6): 40-44.
[14] 周媛, 熊华平, 毛唯, 陈波, 叶雷. TiAl合金与高温合金的扩散焊接头组织及性能[J]. 材料工程, 2012, 0(8): 88-91,100.
[15] 付明杰, 静永娟, 张继. 挤压开坯γ-TiAl合金的热变形行为研究[J]. 材料工程, 2011, 0(5): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn