Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.
蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
Jian-ming CAI, Guang-bao MI, Fan GAO, Hao HUANG, Jing-xia CAO, Xu HUANG, Chun-xiao CAO. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine. Journal of Materials Engineering, 2016, 44(8): 1-10.
WILLIAMS J C . Alternate materials choices-some challenges to the increased use of Ti alloys[J]. Materials Science and Engineering:A, 1999, 263 (2): 107- 111.
doi: 10.1016/S0921-5093(98)01179-4
2
LEYENS C , KOCIAN F , HAUSMANN J , et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003, 7 (3): 201- 210.
doi: 10.1016/S1270-9638(02)00013-5
3
陈光. 频发的发动机钛着火故障[J]. 国际航空, 2009, (3): 45- 47.
3
CHEN G . Frequent Ti-alloy fired accidents[J]. International Aviation, 2009, (3): 45- 47.
JIANG H F , GU Y X , QING H . New structure and strength design of aero——engine[J]. Gas Turbine Experiment and Research, 2007, 20 (2): 1- 4.
5
ALBRECHT J . Comparing fatigue behavior of titanium and nickel-based alloys[J]. Materials Science and Engineering:A, 1999, 263 (2): 176- 186.
doi: 10.1016/S0921-5093(98)01176-9
6
DAEUBLER M A, HELM D.Development of high temperature Ti-base disc materials in competition to Ni-base superalloys[A].High Temperature Materials for Power Engineering[C].Liege, Belgium, 1990.1717-1726.
7
LÜTJERING G , WILLIAMS J C . Titanium[M]. New York: Springer, 2003.
CAI J M , CAO C X . Alloy design and application expectation of a new generation 600℃high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34 (4): 27- 36.
ZENG L Y , ZHAO Y Q , HONG Q , et al. Research and development of high temperature titanium alloys at 600℃[J]. Titanium Industry Progress, 2012, 29 (5): 1- 5.
WANG T , GUO H Z , ZHANG Y Q , et al. Effects of hot forging temperature on microstructure and mechanical property of TG6 high temperature titanium alloy[J]. Acta Metallurgica Sinica, 2010, 46 (8): 913- 920.
doi: 10.3724/SP.J.1037.2010.00851
12
CAI J M , HUANG X , CAO C X . Thermal stability of TG6 titanium alloy and its partial resumption at high temperature[J]. Rare Metal Materials and Engineering, 2010, 39 (11): 1893- 1896.
doi: 10.1016/S1875-5372(10)60133-6
CAO J X , HUANG X , MI G B , et al. Research progress on application technique of Ti-V-Cr burn resistant titanium alloys[J]. Journal of Aeronautical Materials, 2014, 34 (4): 92- 97.
14
曹春晓. 钛合金在未来航空领域的应用前景[J]. 国际航空, 2006, (8): 59- 60.
14
CAO C X . Application prospect of titanium alloys in future aviation[J]. International Aviation, 2006, (8): 59- 60.
LAI Y J , ZHANG P X , XIN S W , et al. Research progress on engineered technology of fireproof titanium alloy in China[J]. Rare Metal Materials and Engineering, 2015, 44 (8): 2067- 2073.
MI G B , HUANG X , CAO J X , et al. Ignition resistance performance and its theoretical analysis of Ti-V-Cr type fireproof titanium alloy[J]. Acta Metallurgica Sinica, 2014, 50 (5): 575- 586.
MI G B , CAO C X , HUANG X , et al. Non-isothermal oxidation characteristic and fireproof property prediction of Ti-V-Cr type fireproof titanium alloy[J]. Journal of Materials Engineering, 2016, 44 (1): 1- 10.
MI G B , HUANG X , CAO J X , et al. Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition[J]. Acta Phys Sin, 2016, 65 (5): 217- 226.
MI G B , HUANG X , CAO J X , et al. Experimental technique of titanium fire in aero-engine[J]. Journal of Aeronautical Materials, 2016, 36 (3): 20- 26.
20
YAMAGUCHI M , INUI H , ITO K . High-temperatures structural intermetallics[J]. Acta Materialia, 2000, 48 (1): 307- 322.
doi: 10.1016/S1359-6454(99)00301-8
21
SAUTHOFF G . Multiphase intermetallic alloys for structural applications[J]. Intermetallics, 2000, 8 (9): 1101- 1109.
22
DIMIDUK D M . Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering:A, 1999, 263 (2): 281- 288.
doi: 10.1016/S0921-5093(98)01158-7
ZHANG M J , NAN H , JU Z Q , et al. Aeronautical cast Ti alloy and forming technology development[J]. Journal of Aeronautical Materials, 2016, 36 (3): 13- 19.
CHEN Y Y , CUI N , KONG F T . Progress of deformed TiAl alloys[J]. Journal of Aeronautical Materials, 2014, 34 (4): 112- 118.
26
SONG L , XU X , YOU L , et al. Ordered α2 to ωo phase transformations in high Nb-containing TiAl alloys[J]. Acta Materialia, 2015, 91, 330- 339.
doi: 10.1016/j.actamat.2015.03.025
GAO F , LI Z X . Extrusion process of fine grained γ-TiAl alloy bar[J]. Aeronautical Manufacturing Technology, 2014, (10): 88- 93.
29
VAHLAS C , HALL I W , HAURIE I . Investigation of interfacial reactivity in composite materials[J]. Materials Science and Engineering:A, 1999, 259 (2): 269- 278.
doi: 10.1016/S0921-5093(98)00905-8
WANG Z Q , SHAN C W , REN J X , et al. Generating 4-axis plunge roughing paths for open blisks[J]. Aeronautical Manufacturing Technology, 2007, (2): 94- 97.
31
BACHE M R, DIXON M, VOICE W E.Fatigue behavior of advancedα-TiAl alloys subjected to small particle impacts[A].Proceedings of the 12th World Conference on Titanium[C].Beijing:Science Press, 2011.
HONG Y S , ZHAO A G , QIAN G A . Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45 (7): 769- 780.