Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (8): 29-33    DOI: 10.11868/j.issn.1001-4381.2016.08.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
奥氏体不锈钢晶粒细化对形变机制和力学性能的影响
万响亮1,2, 李光强2,3, 周博文2, 马江华1
1. 武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室, 武汉 430081;
2. 省部共建耐火材料与冶金国家重点实验室, 武汉 430081;
3. 高性能钢铁材料及其应用湖北省协同创新中心, 武汉 430081
Effect of Grain Refinement on Deformation Mechanism and Mechanical Properties of Austenitic Stainless Steel
WAN Xiang-liang1,2, LI Guang-qiang2,3, ZHOU Bo-wen2, MA Jiang-hua1
1. Key Laboratory for Ferrous Metallurgy and Resources Utilization(Ministry of Education), Wuhan University of Science and Technology, Wuhan 430081, China;
2. The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China;
3. Hubei Collaborative Innovation Center for Advanced Steels, Wuhan 430081, China
全文: PDF(3130 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用相逆转变原理采用冷变形使得亚稳奥氏体转变为形变马氏体,采用不同温度和时间退火分别获得纳米晶/超细晶和粗晶奥氏体不锈钢。通过拉伸实验得到不同晶粒尺寸的奥氏体不锈钢力学性能,采用透射电镜观察形变组织结构并利用扫描电镜观察断口特征。结果表明:高屈服强度纳米晶/超细晶奥氏体不锈钢通过形变孪晶获得优良塑性;而低屈服强度的粗晶奥氏体不锈钢发生形变诱导马氏体效应,得到良好的塑性;两组具有不同形变机制的奥氏体不锈钢拉伸断口均为韧性断裂。形变机制由形变孪晶转变为形变诱导马氏体归因于晶粒细化导致奥氏体稳定性大幅度提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万响亮
李光强
周博文
马江华
关键词 奥氏体不锈钢晶粒细化形变机制力学性能奥氏体稳定性    
Abstract:The concept of phase reversion involving cold deformation of metastable austenite to generate strain-induced martensite, followed by temperature-time annealing sequence, was used to obtain grain size of nanograined/ultrafine-grained and coarse-grained austenitic stainless steels. The mechanical properties of austenitic stainless steels with different grain sizes were obtained by tensile testing, the deformation microstructure and fracture surface were analyzed by TEM and SEM observations, respectively. The results indicate that deformation twins contribute to excellent ductility in high yield strength nanograined/ultrafine-grained steel, while in the low yield strength coarse-grained steel, the high ductility is due to strain-induced martensite transformation. Interestingly, the tensile fracture of the two austensite stainless steels with different deformation mechanism is ductile fracture. The deformation mechanism from deformation twins to strain-induced martensite in the coarse-grained structure in nanograined/ultrafine-grained structures is owing to the increased stability of austenite with grain refining.
Key wordsaustenitic stainless steel    grain refinement    deformation mechanism    mechanical property    aus-tenite stability
收稿日期: 2014-12-13      出版日期: 2016-08-23
中图分类号:  TG422.3  
通讯作者: 李光强(1963-),男,教授,博士,研究方向为钢铁材料的强韧化机理,联系地址:湖北省武汉市青山区和平大道947号武汉科技大学185号信箱(430081),liguangqiang@wust.edu.cn     E-mail: liguangqiang@wust.edu.cn
引用本文:   
万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
WAN Xiang-liang, LI Guang-qiang, ZHOU Bo-wen, MA Jiang-hua. Effect of Grain Refinement on Deformation Mechanism and Mechanical Properties of Austenitic Stainless Steel. Journal of Materials Engineering, 2016, 44(8): 29-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/29
[1] LO K H,SHEK C H,LAI J K L.Recent developments in stainless steels[J].Mater Sci Eng R,2009,65(4-6):39-104.
[2] KARJALAINEN L P,TAULAVUORI T,SELLMAN M,et al.Some strengthening methods for austenitic stainless steels[J].Steel Research Int,2008,79(6):404-412.
[3] 高玉魁.冲击强化对304奥氏体不锈钢拉伸性能的影响[J].材料工程,2014,(8):36-40. GAO Y K.Influence of impact enhancements on tensile property of 304 austenite steel[J].J Mater Eng,2014,(8):36-40.
[4] SABOONI S,KARIMZADEH F,H.ENAYATI M.Thermal stability study of ultrafine grained 304L stainless steel produced by martensitic process[J].J Mater Eng Perform,2014,23(5):1665-1672.
[5] KISKO A,MISRA RDK,TALONEN J,et al.The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel[J].Mater Sci Eng:A,2013,578:408-416.
[6] BEHJATI P,KERMANPUR A,NAJAFIZADEH A,et al.Effect of annealing temperature on nano/ultrafine grain of Ni-free austenitic stainless steel[J].Mater Sci Eng:A,2014,592:77-82.
[7] JOHANNSEN D L,KYROLAINEN A,FERREIRA P J.Influence of annealing treatment on the formation of nano/submicron grain size AlSi 301 austenitic stainless steels[J].Metall Mater Trans A,2006,37(8):2325-2338.
[8] CHALLA V S A,WAN X L,SOMANI M C,et al.Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism[J].Mater Sci Eng:A,2014,613:60-70.
[9] MATSUOKA Y,IWASAKI T,NOBUO N,et al.Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J].ISIJ Int,2013,53(7):1224-1230.
[10] MISRA R D K,NAYAK S,MALI S A,et al.On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J].Metall Mater Trans A,2010,41:3-12.
[11] YAN F K,LIU G Z,TAO N R,et al.Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J].Acta Mater,2012,60:1059-1071.
[12] YOO C S,PARK Y M,JUNG Y S,et al.Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel[J].Scripta Mater,2008,59(1):71-74.
[13] CHRISTIAN J W,MAHAJAN S.Deformation twinning[J].Prog Mater Sci,1995,39(1-2):1-157.
[14] DAS A,SIVAPRASAD S,CHAKRABORTI P C,et al.Correspondence of fracture surface features with mechanical properties in 304LN stainless steel[J].Mater Sci Eng:A,2008,496(1-2):98-105.
[15] COOMAN B C D,KWON O,CHIN K G.State-of-the-knowledge on TWIP steel[J].Mater Sci Technol,2012,28(5):513-527.
[16] TSAKIRIS V,EDMONDS D V.Martensite and deformation twinning in austenitic steels[J].Mater Sci Eng:A,1999,273-275:430-436.
[17] LEE T H,SHIN E,OH C S,et al.Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels[J].Acta Mater,2010,58(8):3173-3186.
[18] TAKAKI S,FUKUNAGA K,SYARIF J,et al.Effect of grain refinement on thermal stability of metastable austenitic steel[J].Mater Trans,2004,45(7):2245-2251.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn