1 Key Laboratory for Ferrous Metallurgy and Resources Utilization(Ministry of Education), Wuhan University of Science and Technology, Wuhan 430081, China 2 The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China 3 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan 430081, China
The concept of phase reversion involving cold deformation of metastable austenite to generate strain-induced martensite, followed by temperature-time annealing sequence, was used to obtain grain size of nanograined/ultrafine-grained and coarse-grained austenitic stainless steels. The mechanical properties of austenitic stainless steels with different grain sizes were obtained by tensile testing, the deformation microstructure and fracture surface were analyzed by TEM and SEM observations, respectively. The results indicate that deformation twins contribute to excellent ductility in high yield strength nanograined/ultrafine-grained steel, while in the low yield strength coarse-grained steel, the high ductility is due to strain-induced martensite transformation. Interestingly, the tensile fracture of the two austensite stainless steels with different deformation mechanism is ductile fracture. The deformation mechanism from deformation twins to strain-induced martensite in the coarse-grained structure in nanograined/ultrafine-grained structures is owing to the increased stability of austenite with grain refining.
LO K H , SHEK C H , LAI J K L . Recent developments in stainless steels[J]. Mater Sci Eng R, 2009, 65 (4-6): 39- 104.
doi: 10.1016/j.mser.2009.03.001
2
KARJALAINEN L P , TAULAVUORI T , SELLMAN M , et al. Some strengthening methods for austenitic stainless steels[J]. Steel Research Int, 2008, 79 (6): 404- 412.
GAO Y K . Influence of impact enhancements on tensile property of 304 austenite steel[J]. J Mater Eng, 2014, (8): 36- 40.
4
SABOONI S , KARIMZADEH F , ENAYATI M H . Thermal stability study of ultrafine grained 304L stainless steel produced by martensitic process[J]. J Mater Eng Perform, 2014, 23 (5): 1665- 1672.
doi: 10.1007/s11665-014-0924-9
5
KISKO A , MISRA RDK , TALONEN J , et al. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel[J]. Mater Sci Eng:A, 2013, 578, 408- 416.
doi: 10.1016/j.msea.2013.04.107
6
BEHJATI P , KERMANPUR A , NAJAFIZADEH A , et al. Effect of annealing temperature on nano/ultrafine grain of Ni-free austenitic stainless steel[J]. Mater Sci Eng:A, 2014, 592, 77- 82.
doi: 10.1016/j.msea.2013.10.087
7
JOHANNSEN D L , KYROLAINEN A , FERREIRA P J . Influence of annealing treatment on the formation of nano/submicron grain size AlSi 301 austenitic stainless steels[J]. Metall Mater Trans A, 2006, 37 (8): 2325- 2338.
doi: 10.1007/BF02586207
8
CHALLA V S A , WAN X L , SOMANI M C , et al. Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism[J]. Mater Sci Eng:A, 2014, 613, 60- 70.
doi: 10.1016/j.msea.2014.06.065
9
MATSUOKA Y , IWASAKI T , NOBUO N , et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int, 2013, 53 (7): 1224- 1230.
doi: 10.2355/isijinternational.53.1224
10
MISRA R D K , NAYAK S , MALI S A , et al. On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J]. Metall Mater Trans A, 2010, 41, 3- 12.
11
YAN F K , LIU G Z , TAO N R , et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J]. Acta Mater, 2012, 60, 1059- 1071.
doi: 10.1016/j.actamat.2011.11.009
12
YOO C S , PARK Y M , JUNG Y S , et al. Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel[J]. Scripta Mater, 2008, 59 (1): 71- 74.
doi: 10.1016/j.scriptamat.2008.02.024
13
CHRISTIAN J W , MAHAJAN S . Deformation twinning[J]. Prog Mater Sci, 1995, 39 (1-2): 1- 157.
doi: 10.1016/0079-6425(94)00007-7
14
DAS A , SIVAPRASAD S , CHAKRABORTI P C , et al. Correspondence of fracture surface features with mechanical properties in 304LN stainless steel[J]. Mater Sci Eng:A, 2008, 496 (1-2): 98- 105.
doi: 10.1016/j.msea.2008.05.007
15
COOMAN B C D , KWON O , CHIN K G . State-of-the-knowledge on TWIP steel[J]. Mater Sci Technol, 2012, 28 (5): 513- 527.
doi: 10.1179/1743284711Y.0000000095
16
TSAKIRIS V , EDMONDS D V . Martensite and deformation twinning in austenitic steels[J]. Mater Sci Eng:A, 1999, 273-275, 430- 436.
doi: 10.1016/S0921-5093(99)00322-6
17
LEE T H , SHIN E , OH C S , et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels[J]. Acta Mater, 2010, 58 (8): 3173- 3186.
doi: 10.1016/j.actamat.2010.01.056
18
TAKAKI S , FUKUNAGA K , SYARIF J , et al. Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater Trans, 2004, 45 (7): 2245- 2251.
doi: 10.2320/matertrans.45.2245