Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (8): 29-33    DOI: 10.11868/j.issn.1001-4381.2016.08.005
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
奥氏体不锈钢晶粒细化对形变机制和力学性能的影响
万响亮1,2, 李光强2,3,*(), 周博文2, 马江华1
1 武汉科技大学 钢铁冶金及资源利用省部共建教育部重点实验室, 武汉 430081
2 省部共建耐火材料与冶金国家重点实验室, 武汉 430081
3 高性能钢铁材料及其应用湖北省协同创新中心, 武汉 430081
Effect of Grain Refinement on Deformation Mechanism and Mechanical Properties of Austenitic Stainless Steel
Xiang-liang WAN1,2, Guang-qiang LI2,3,*(), Bo-wen ZHOU2, Jiang-hua MA1
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization(Ministry of Education), Wuhan University of Science and Technology, Wuhan 430081, China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
3 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan 430081, China
全文: PDF(3130 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用相逆转变原理采用冷变形使得亚稳奥氏体转变为形变马氏体,采用不同温度和时间退火分别获得纳米晶/超细晶和粗晶奥氏体不锈钢。通过拉伸实验得到不同晶粒尺寸的奥氏体不锈钢力学性能,采用透射电镜观察形变组织结构并利用扫描电镜观察断口特征。结果表明:高屈服强度纳米晶/超细晶奥氏体不锈钢通过形变孪晶获得优良塑性;而低屈服强度的粗晶奥氏体不锈钢发生形变诱导马氏体效应,得到良好的塑性;两组具有不同形变机制的奥氏体不锈钢拉伸断口均为韧性断裂。形变机制由形变孪晶转变为形变诱导马氏体归因于晶粒细化导致奥氏体稳定性大幅度提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万响亮
李光强
周博文
马江华
关键词 奥氏体不锈钢晶粒细化形变机制力学性能奥氏体稳定性    
Abstract

The concept of phase reversion involving cold deformation of metastable austenite to generate strain-induced martensite, followed by temperature-time annealing sequence, was used to obtain grain size of nanograined/ultrafine-grained and coarse-grained austenitic stainless steels. The mechanical properties of austenitic stainless steels with different grain sizes were obtained by tensile testing, the deformation microstructure and fracture surface were analyzed by TEM and SEM observations, respectively. The results indicate that deformation twins contribute to excellent ductility in high yield strength nanograined/ultrafine-grained steel, while in the low yield strength coarse-grained steel, the high ductility is due to strain-induced martensite transformation. Interestingly, the tensile fracture of the two austensite stainless steels with different deformation mechanism is ductile fracture. The deformation mechanism from deformation twins to strain-induced martensite in the coarse-grained structure in nanograined/ultrafine-grained structures is owing to the increased stability of austenite with grain refining.

Key wordsaustenitic stainless steel    grain refinement    deformation mechanism    mechanical property    aus-tenite stability
收稿日期: 2014-12-13      出版日期: 2016-08-23
中图分类号:  TG422.3  
基金资助:国家自然科学基金资助项目(51501134);中国博士后科学基金第55批面上资助项目(2014M550414)
通讯作者: 李光强     E-mail: liguangqiang@wust.edu.cn
作者简介: 李光强(1963-), 男, 教授, 博士, 研究方向为钢铁材料的强韧化机理, 联系地址:湖北省武汉市青山区和平大道947号武汉科技大学185号信箱(430081), liguangqiang@wust.edu.cn
引用本文:   
万响亮, 李光强, 周博文, 马江华. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程, 2016, 44(8): 29-33.
Xiang-liang WAN, Guang-qiang LI, Bo-wen ZHOU, Jiang-hua MA. Effect of Grain Refinement on Deformation Mechanism and Mechanical Properties of Austenitic Stainless Steel. Journal of Materials Engineering, 2016, 44(8): 29-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.005      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/29
Fig.1  奥氏体不锈钢冷轧退火后微观组织  (a)纳米晶/超细晶;(b)粗晶
Fig.2  奥氏体不锈钢工程应力-工程应变曲线
Fig.3  奥氏体不锈钢在应变0.1时TEM图(1)和衍射花样(2)
(a)纳米晶/超细晶;(b)粗晶
Fig.4  纳米晶/超细晶奥氏体不锈钢断口形貌
Fig.5  粗晶奥氏体不锈钢断口形貌
Fig.6  不同晶粒尺寸时马氏体形核所需的弹性应变能曲线
1 LO K H , SHEK C H , LAI J K L . Recent developments in stainless steels[J]. Mater Sci Eng R, 2009, 65 (4-6): 39- 104.
doi: 10.1016/j.mser.2009.03.001
2 KARJALAINEN L P , TAULAVUORI T , SELLMAN M , et al. Some strengthening methods for austenitic stainless steels[J]. Steel Research Int, 2008, 79 (6): 404- 412.
3 高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响[J]. 材料工程, 2014, (8): 36- 40.
3 GAO Y K . Influence of impact enhancements on tensile property of 304 austenite steel[J]. J Mater Eng, 2014, (8): 36- 40.
4 SABOONI S , KARIMZADEH F , ENAYATI M H . Thermal stability study of ultrafine grained 304L stainless steel produced by martensitic process[J]. J Mater Eng Perform, 2014, 23 (5): 1665- 1672.
doi: 10.1007/s11665-014-0924-9
5 KISKO A , MISRA RDK , TALONEN J , et al. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel[J]. Mater Sci Eng:A, 2013, 578, 408- 416.
doi: 10.1016/j.msea.2013.04.107
6 BEHJATI P , KERMANPUR A , NAJAFIZADEH A , et al. Effect of annealing temperature on nano/ultrafine grain of Ni-free austenitic stainless steel[J]. Mater Sci Eng:A, 2014, 592, 77- 82.
doi: 10.1016/j.msea.2013.10.087
7 JOHANNSEN D L , KYROLAINEN A , FERREIRA P J . Influence of annealing treatment on the formation of nano/submicron grain size AlSi 301 austenitic stainless steels[J]. Metall Mater Trans A, 2006, 37 (8): 2325- 2338.
doi: 10.1007/BF02586207
8 CHALLA V S A , WAN X L , SOMANI M C , et al. Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism[J]. Mater Sci Eng:A, 2014, 613, 60- 70.
doi: 10.1016/j.msea.2014.06.065
9 MATSUOKA Y , IWASAKI T , NOBUO N , et al. Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel[J]. ISIJ Int, 2013, 53 (7): 1224- 1230.
doi: 10.2355/isijinternational.53.1224
10 MISRA R D K , NAYAK S , MALI S A , et al. On the significance of nature of strain-induced martensite on phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel[J]. Metall Mater Trans A, 2010, 41, 3- 12.
11 YAN F K , LIU G Z , TAO N R , et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles[J]. Acta Mater, 2012, 60, 1059- 1071.
doi: 10.1016/j.actamat.2011.11.009
12 YOO C S , PARK Y M , JUNG Y S , et al. Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel[J]. Scripta Mater, 2008, 59 (1): 71- 74.
doi: 10.1016/j.scriptamat.2008.02.024
13 CHRISTIAN J W , MAHAJAN S . Deformation twinning[J]. Prog Mater Sci, 1995, 39 (1-2): 1- 157.
doi: 10.1016/0079-6425(94)00007-7
14 DAS A , SIVAPRASAD S , CHAKRABORTI P C , et al. Correspondence of fracture surface features with mechanical properties in 304LN stainless steel[J]. Mater Sci Eng:A, 2008, 496 (1-2): 98- 105.
doi: 10.1016/j.msea.2008.05.007
15 COOMAN B C D , KWON O , CHIN K G . State-of-the-knowledge on TWIP steel[J]. Mater Sci Technol, 2012, 28 (5): 513- 527.
doi: 10.1179/1743284711Y.0000000095
16 TSAKIRIS V , EDMONDS D V . Martensite and deformation twinning in austenitic steels[J]. Mater Sci Eng:A, 1999, 273-275, 430- 436.
doi: 10.1016/S0921-5093(99)00322-6
17 LEE T H , SHIN E , OH C S , et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels[J]. Acta Mater, 2010, 58 (8): 3173- 3186.
doi: 10.1016/j.actamat.2010.01.056
18 TAKAKI S , FUKUNAGA K , SYARIF J , et al. Effect of grain refinement on thermal stability of metastable austenitic steel[J]. Mater Trans, 2004, 45 (7): 2245- 2251.
doi: 10.2320/matertrans.45.2245
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[5] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[10] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[13] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[14] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[15] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn