Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (8): 85-92    DOI: 10.11868/j.issn.1001-4381.2016.08.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
SUJ2轴承钢超长寿命疲劳行为研究
李永德1,2,*(), 张莉莉1, 张冲3, 贺莹莹4
1 河北工程大学 装备制造学院, 河北 邯郸 056038
2 达力普石油专用管有限公司技术中心, 河北 沧州 061000
3 山东省分析测试中心, 济南 250014
4 江苏省(沙钢)钢铁研究院, 江苏 张家港 215625
Ultra-long Life Fatigue Behavior of SUJ2 Bearing Steel
Yong-de LI1,2,*(), Li-li ZHANG1, Chong ZHANG3, Ying-ying HE4
1 Equipment Manufacturing College, Hebei University of Engineering, Handan 056038, Hebei, China
2 Technology R & D Center, Dalipal Pipe Group Co., Ltd., Cangzhou 061000, Hebei, China
3 Shandong Analysis and Test Center, Jinan 250014, China
4 Jiangsu Iron & Steel Research Institute(Shagang), Zhangjiagang 215625, Jiangsu, China
全文: PDF(6158 KB)   HTML ( 20 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超声疲劳试验机研究SUJ2轴承钢的超长寿命疲劳。结果表明:对于复合氧化物和TiCN裂纹源,裂纹从夹杂物与基体界面处萌生;铁、铬合金碳化物裂纹源则为夹杂物本身开裂。颗粒状亮面(GBF)相对尺寸正比于裂纹源处夹杂物边缘的应力强度因子范围1/ΔKinc2,对于本实验的SUJ2材料,当ΔKinc>8MPa·m1/2时GBF不再形成。通过数据拟合得到了GBF内裂纹扩展规律=(m1+m2Nfm0,证实了Paris公式可以用来描述GBF内的裂纹扩展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李永德
张莉莉
张冲
贺莹莹
关键词 超长寿命疲劳夹杂物GBF相对尺寸裂纹扩展    
Abstract

Ultra-long life fatigue behavior of SUJ2 bearing steel was studied by ultrasonic fatigue testing machine. The results show that, for the crack origin of composite oxide and TiCN, crack initiates from the interface between inclusion and matrix, and for the iron-chromium carbide crack origin, the inclusion itself cracks. The relative GBF(granular bright facet) size is proportional to 1/ΔKinc2. GBF is no longer formed when ΔKinc>8MPa·m1/2 for SUJ2 bearing steel. The crack propagation rule in GBF is obtained by data fitting, it is verified that Paris equation which can describe the crack growth in GBF is verified.

Key wordsultra-long life fatigue    inclusion    relative GBF size    crack propagation
收稿日期: 2014-08-14      出版日期: 2016-08-23
中图分类号:  TG142.1  
基金资助:国家自然科学基金资助项目(51101094);河北省高等学校科学技术研究重点资助项目(ZD2015045);河北工程大学青年学术骨干基金(HBE-Yooth001);河北工程大学博士专项基金(HBE2014004);河北省自然科学基金(E2015402111)
通讯作者: 李永德     E-mail: ydli@alum.imr.ac.cn
作者简介: 李永德(1981-), 男, 博士, 研究方向:疲劳与断裂及失效分析, 联系地址:河北省邯郸市光明南大街199号河北工程大学(056038), ydli@alum.imr.ac.cn
引用本文:   
李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
Yong-de LI, Li-li ZHANG, Chong ZHANG, Ying-ying HE. Ultra-long Life Fatigue Behavior of SUJ2 Bearing Steel. Journal of Materials Engineering, 2016, 44(8): 85-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.08.014      或      http://jme.biam.ac.cn/CN/Y2016/V44/I8/85
C H Si Mn Cr Cu Ni Mo P S V Fe
0.98 0.9×10-4 0.29 0.36 1.60 0.10 0.057 0.0039 0.0039 0.003 0.017 Balance
Table 1  SUJ2轴承钢的化学成分(质量分数/%)
Fig.1  超声疲劳样品尺寸
Fig.2  鱼眼形貌
Fig.3  裂纹源区微观形貌
(a)钙铝镁复合氧化物;(b)TiCN;(c)铁铬合金碳化物;(d)内部基体;(1)左端;(2)右端
Fig.4  断口上夹杂物分布(a)与缺陷尺寸极值统计分布(b)
Fig.5  GBF相对尺寸与ΔKinc的关系
(a)SUJ2;(b)SUP-QT, SCV-QT和G-QT[25]; (c)60Si2CrV, 60Si2Cr和60Si2Mn[26]; (d)TT150[28]和NSH1[27]
Fig.6  夹杂物尺寸与ΔKinc的关系
Fig.7  GBF相对尺寸与疲劳寿命的定量关系及GBF内裂纹扩展规律
(a)不同高强钢的疲劳寿命与GBF相对尺寸的关系; (b)相同氢含量时疲劳寿命与GBF相对尺寸的关系; (c)GBF内裂纹扩展规律; (d)GBF内裂纹扩展示意图
1 洪友士, 赵爱国, 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45 (7): 769- 780.
1 HONG Y S , ZHAO A G , QIAN G A . Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45 (7): 769- 780.
2 王清远, 刘永杰. 结构金属材料超高周疲劳破坏行为[J]. 固体力学学报, 2010, 31 (5): 496- 502.
2 WANG Q Y , LIU Y J . Understanding fatigue failure in structural metals in ultra-high cycle regime[J]. Chinese Journal of Solid Mechanics, 2010, 31 (5): 496- 502.
3 鲁连涛, 张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度, 2005, 27 (3): 388- 395.
3 LU L T , ZHANG W H . Review of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2005, 27 (3): 388- 395.
4 李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能——非金属夹杂物的影响[M]. 北京: 冶金工业出版社, 2010: 1- 6.
5 BATHIAS C , PARIS P C . Gigacycle Fatigue in Mechanical Practice[M]. New York: Marcel Dekker, 2005: 1- 7.
6 薛红前, 陶华. 超声疲劳试验方法在铸铝疲劳试验中的应用[J]. 机械强度, 2004, 26 (2): 203- 206.
6 XUE H Q , TAO H . Ultrasonic fatigue test method for testing of cast aluminum[J]. Journal of Mechanical Strength, 2004, 26 (2): 203- 206.
7 SAKAI T . Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J]. Journal of Solid Mechanics and Materials Engineering, 2009, 3 (3): 425- 439.
doi: 10.1299/jmmp.3.425
8 胡燕慧, 张铮, 钟群鹏, 等. 金属材料超高周疲劳研究综述[J]. 机械强度, 2009, 31 (6): 979- 985.
8 HU Y H , ZHANG Z , ZHONG Q P , et al. Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31 (6): 979- 985.
9 MURAKAMI Y , YOKOYAMA N N , NAGATA J . Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 735- 746.
doi: 10.1046/j.1460-2695.2002.00576.x
10 STANZL S E , TSCHEGG E K , MAYER H . Lifetime measurements for random loading in the very high cycle fatigue range[J]. International Journal of Fatigue, 1986, 8 (4): 195- 200.
doi: 10.1016/0142-1123(86)90021-6
11 LUKÁŠ P , KUNZ L . Specific features of high cycle and ultra-high-cycle fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 747- 753.
doi: 10.1046/j.1460-2695.2002.00562.x
12 MURAKAMI Y , NOMOTO T , UEDA T . Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fracture Engineering Materials Structure, 1999, 22 (7): 581- 590.
doi: 10.1046/j.1460-2695.1999.00187.x
13 SHIOZAWA K , LU L , ISHIHARA S . S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fracture Engineering Materials Structure, 2002, 24 (12): 781- 790.
14 SAKAI T , SATO Y , OGUMA N . Characteristic S-N properties of high-carbon-chromium bearing steel under axial loading in long-life fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 765- 773.
doi: 10.1046/j.1460-2695.2002.00574.x
15 OCHI Y , MATSUMURA T , MASAKI K , et al. High-cycle rotating bending fatigue property in very long life regime of high strength steels[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 823- 830.
doi: 10.1046/j.1460-2695.2002.00575.x
16 TANAKA K , AKINIWA Y . Fatigue crack propagation behaviour derived from S-N data in very highcycle fatigue regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 775- 784.
doi: 10.1046/j.1460-2695.2002.00547.x
17 CHAPETTI M D , TAGAWA T , MIYATA T . Ultra-long cycle fatigue of high-strength carbon steels. partⅠ:review and analysis of the mechanism of failure[J]. Materials Science and Engineering:A, 2003, 356 (3): 227- 235.
18 SANDER M , MULLER T , LEBAHN J . Influence of mean stress and variable amplitude loading on the fatigue behavior of a high-strength steel in VHCF regime[J]. International Journal of Fatigue, 2014, 62 (2): 10- 20.
19 李永德, 徐娜, 郭卫民, 等. 高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J]. 材料工程, 2014, (2): 87- 98.
19 LI Y D , XU N , GUO W M , et al. The influence of high pressure thermal hydrogen charging on very high cycle fatigue behaviors of SUJ2 bearing steel[J]. Journal of Materials Engineering, 2014, (2): 87- 98.
20 李永德, 郭卫民, 徐娜, 等. SUJ2轴承钢超声疲劳GBF内裂纹扩展规律[J]. 材料热处理学报, 2014, 35 (1): 49- 54.
20 LI Y D , GUO W M , XU N , et al. Fatigue crack growth behavior in GBF area of SUJ2 bearing steel in very high cycle fatigue regime[J]. Transactions of Materials and Heat Treatment, 2014, 35 (1): 49- 54.
21 FURUYA Y , HIRUKAWA H , KIMURA T , et al. Gigacycle fatigue properties of high strength steels according to ODA and inclusion sizes[J]. Metallurgical and Materials Transactions Part A, 2007, 38 (8): 1722- 1730.
doi: 10.1007/s11661-007-9225-3
22 张继明, 张建峰, 杨振国, 等. 高强钢中最大夹杂物的尺寸估计与疲劳强度预测[J]. 金属学报, 2004, 40 (8): 846- 850.
22 ZHANG J M , ZHANG J F , YANG Z G , et al. Estimation of maximum inclusion size and fatigue strength in high strength steel[J]. Acta Metallurgica Sinica, 2004, 40 (8): 846- 850.
23 MURAKAMI Y . Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam Boston: Elsevier, 2002: 11- 24.
24 CHAPETTI M D , TAGAWA T , MIYATA T . Ultra-long cycle fatigue of high-strength carbon steels. partⅡ:estimations of fatigue limit for failure from internal inclusions[J]. Materials Science and Engineering:A, 2003, 356 (Suppl 1-2): 236- 244.
25 李永德.高强钢的超高周疲劳性能研究及氢对疲劳性能的影响[D].沈阳:中国科学院金属研究所, 2009.
26 柳洋波.夹杂物和贝氏体对高强钢的超高周疲劳性能的影响[D].沈阳:中国科学院金属研究所, 2011.
27 聂义宏, 惠卫军, 傅万堂, 等. 中碳高强弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43 (10): 1031- 1036.
27 NIE Y H , HUI W J , FU W T , et al. Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta Metallurgica Sinica, 2007, 43 (10): 1031- 1036.
28 HONG Y S , ZHENG Q L , CHENG Q S , et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. International Journal of Fatigue, 2014, 58, 144- 151.
doi: 10.1016/j.ijfatigue.2013.02.023
29 YANG Z G , LI S X , LIU Y B , et al. Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime[J]. International Journal of Fatigue, 2008, 30, 1016- 1023.
doi: 10.1016/j.ijfatigue.2007.08.011
30 MURAKAMI Y , YAMASHITA Y . Prediction of life scatter of fatigue failure originated at nonmetallic inclusions[J]. Procedia Engineering, 2014, 74, 6- 11.
doi: 10.1016/j.proeng.2014.06.214
31 ZHOU C , ZHANG Y J , HUI W J , et al. Influence of hydrogen on GBF in very high cycle fatigue of high strength steel[J]. Journal of Iron and Steel Research, International, 2013, 20 (12): 92- 97.
doi: 10.1016/S1006-706X(13)60221-6
32 李伟, 李强, 鲁连涛, 等. GCr15钢超高周的疲劳行为[J]. 北京交通大学学报, 2008, 32 (4): 24- 32.
32 LI W , LI Q , LU L T , et al. Fatigue behavior of GCr15 steel in ultra-high life region[J]. Journal of Beijing Jiaotong University, 2008, 32 (4): 24- 32.
33 鲁连涛, 李伟, 张继旺, 等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J]. 金属学报, 2009, 45 (1): 73- 78.
33 LU L T , LI W , ZHANG J W , et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica, 2009, 45 (1): 73- 78.
34 鲁连涛, 盐泽和章, 姜燕. 深层滚压加工对高碳铬轴承钢超长寿命疲劳行为的影响[J]. 金属学报, 2006, 42 (5): 515- 520.
34 LU L T , SHIOZAWA K , JIANG Y . Influence of deeply rolling process on ultralong life fatigue behavior of high-carbon-chromium bearing steel[J]. Acta Metallurgica Sinica, 2006, 42 (5): 515- 520.
35 AKINIWA Y , MIYAMOTO N , TSURU H , et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime[J]. International Journal of Fatigue, 2006, 28 (11): 1555- 1565.
doi: 10.1016/j.ijfatigue.2005.04.017
[1] 岑耀东, 郭曜珲, 马潇, 陈林, 包喜荣. U75V重轨钢弯曲疲劳裂纹扩展行为[J]. 材料工程, 2023, 51(1): 122-129.
[2] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[3] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[4] 郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
[5] 许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
[6] 赵景云, BamberBLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[7] 张彩军, 高立娜, 胡闻佳, 朱立光. 正三棱锥形夹杂物诱导晶内铁素体形核模型研究[J]. 材料工程, 2017, 45(7): 27-33.
[8] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[9] 荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
[10] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[11] 王晶, 尚新春, 路民旭, 张雷. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12-18.
[12] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[13] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[14] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[15] 薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014, 0(3): 7-13,20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn