1 Equipment Manufacturing College, Hebei University of Engineering, Handan 056038, Hebei, China 2 Technology R & D Center, Dalipal Pipe Group Co., Ltd., Cangzhou 061000, Hebei, China 3 Shandong Analysis and Test Center, Jinan 250014, China 4 Jiangsu Iron & Steel Research Institute(Shagang), Zhangjiagang 215625, Jiangsu, China
Ultra-long life fatigue behavior of SUJ2 bearing steel was studied by ultrasonic fatigue testing machine. The results show that, for the crack origin of composite oxide and TiCN, crack initiates from the interface between inclusion and matrix, and for the iron-chromium carbide crack origin, the inclusion itself cracks. The relative GBF(granular bright facet) size is proportional to 1/ΔKinc2. GBF is no longer formed when ΔKinc>8MPa·m1/2 for SUJ2 bearing steel. The crack propagation rule in GBF is obtained by data fitting, it is verified that Paris equation which can describe the crack growth in GBF is verified.
HONG Y S , ZHAO A G , QIAN G A . Essential characteristics and influential factors for very-high-cycle fatigue behavior of metallic materials[J]. Acta Metallurgica Sinica, 2009, 45 (7): 769- 780.
WANG Q Y , LIU Y J . Understanding fatigue failure in structural metals in ultra-high cycle regime[J]. Chinese Journal of Solid Mechanics, 2010, 31 (5): 496- 502.
XUE H Q , TAO H . Ultrasonic fatigue test method for testing of cast aluminum[J]. Journal of Mechanical Strength, 2004, 26 (2): 203- 206.
7
SAKAI T . Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J]. Journal of Solid Mechanics and Materials Engineering, 2009, 3 (3): 425- 439.
doi: 10.1299/jmmp.3.425
HU Y H , ZHANG Z , ZHONG Q P , et al. Recent development of research on very high cycle fatigue of metal materials[J]. Journal of Mechanical Strength, 2009, 31 (6): 979- 985.
9
MURAKAMI Y , YOKOYAMA N N , NAGATA J . Mechanism of fatigue failure in ultralong life regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 735- 746.
doi: 10.1046/j.1460-2695.2002.00576.x
10
STANZL S E , TSCHEGG E K , MAYER H . Lifetime measurements for random loading in the very high cycle fatigue range[J]. International Journal of Fatigue, 1986, 8 (4): 195- 200.
doi: 10.1016/0142-1123(86)90021-6
11
LUKÁŠ P , KUNZ L . Specific features of high cycle and ultra-high-cycle fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 747- 753.
doi: 10.1046/j.1460-2695.2002.00562.x
12
MURAKAMI Y , NOMOTO T , UEDA T . Factors influencing the mechanism of superlong fatigue failure in steels[J]. Fatigue Fracture Engineering Materials Structure, 1999, 22 (7): 581- 590.
doi: 10.1046/j.1460-2695.1999.00187.x
13
SHIOZAWA K , LU L , ISHIHARA S . S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fracture Engineering Materials Structure, 2002, 24 (12): 781- 790.
14
SAKAI T , SATO Y , OGUMA N . Characteristic S-N properties of high-carbon-chromium bearing steel under axial loading in long-life fatigue[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 765- 773.
doi: 10.1046/j.1460-2695.2002.00574.x
15
OCHI Y , MATSUMURA T , MASAKI K , et al. High-cycle rotating bending fatigue property in very long life regime of high strength steels[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 823- 830.
doi: 10.1046/j.1460-2695.2002.00575.x
16
TANAKA K , AKINIWA Y . Fatigue crack propagation behaviour derived from S-N data in very highcycle fatigue regime[J]. Fatigue Fracture Engineering Materials Structure, 2002, 25 (8-9): 775- 784.
doi: 10.1046/j.1460-2695.2002.00547.x
17
CHAPETTI M D , TAGAWA T , MIYATA T . Ultra-long cycle fatigue of high-strength carbon steels. partⅠ:review and analysis of the mechanism of failure[J]. Materials Science and Engineering:A, 2003, 356 (3): 227- 235.
18
SANDER M , MULLER T , LEBAHN J . Influence of mean stress and variable amplitude loading on the fatigue behavior of a high-strength steel in VHCF regime[J]. International Journal of Fatigue, 2014, 62 (2): 10- 20.
LI Y D , XU N , GUO W M , et al. The influence of high pressure thermal hydrogen charging on very high cycle fatigue behaviors of SUJ2 bearing steel[J]. Journal of Materials Engineering, 2014, (2): 87- 98.
LI Y D , GUO W M , XU N , et al. Fatigue crack growth behavior in GBF area of SUJ2 bearing steel in very high cycle fatigue regime[J]. Transactions of Materials and Heat Treatment, 2014, 35 (1): 49- 54.
21
FURUYA Y , HIRUKAWA H , KIMURA T , et al. Gigacycle fatigue properties of high strength steels according to ODA and inclusion sizes[J]. Metallurgical and Materials Transactions Part A, 2007, 38 (8): 1722- 1730.
doi: 10.1007/s11661-007-9225-3
ZHANG J M , ZHANG J F , YANG Z G , et al. Estimation of maximum inclusion size and fatigue strength in high strength steel[J]. Acta Metallurgica Sinica, 2004, 40 (8): 846- 850.
23
MURAKAMI Y . Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam Boston: Elsevier, 2002: 11- 24.
24
CHAPETTI M D , TAGAWA T , MIYATA T . Ultra-long cycle fatigue of high-strength carbon steels. partⅡ:estimations of fatigue limit for failure from internal inclusions[J]. Materials Science and Engineering:A, 2003, 356 (Suppl 1-2): 236- 244.
NIE Y H , HUI W J , FU W T , et al. Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta Metallurgica Sinica, 2007, 43 (10): 1031- 1036.
28
HONG Y S , ZHENG Q L , CHENG Q S , et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. International Journal of Fatigue, 2014, 58, 144- 151.
doi: 10.1016/j.ijfatigue.2013.02.023
29
YANG Z G , LI S X , LIU Y B , et al. Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime[J]. International Journal of Fatigue, 2008, 30, 1016- 1023.
doi: 10.1016/j.ijfatigue.2007.08.011
30
MURAKAMI Y , YAMASHITA Y . Prediction of life scatter of fatigue failure originated at nonmetallic inclusions[J]. Procedia Engineering, 2014, 74, 6- 11.
doi: 10.1016/j.proeng.2014.06.214
31
ZHOU C , ZHANG Y J , HUI W J , et al. Influence of hydrogen on GBF in very high cycle fatigue of high strength steel[J]. Journal of Iron and Steel Research, International, 2013, 20 (12): 92- 97.
doi: 10.1016/S1006-706X(13)60221-6
LI W , LI Q , LU L T , et al. Fatigue behavior of GCr15 steel in ultra-high life region[J]. Journal of Beijing Jiaotong University, 2008, 32 (4): 24- 32.
LU L T , LI W , ZHANG J W , et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica, 2009, 45 (1): 73- 78.
LU L T , SHIOZAWA K , JIANG Y . Influence of deeply rolling process on ultralong life fatigue behavior of high-carbon-chromium bearing steel[J]. Acta Metallurgica Sinica, 2006, 42 (5): 515- 520.
35
AKINIWA Y , MIYAMOTO N , TSURU H , et al. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime[J]. International Journal of Fatigue, 2006, 28 (11): 1555- 1565.
doi: 10.1016/j.ijfatigue.2005.04.017