Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (10): 8-16    DOI: 10.11868/j.issn.1001-4381.2016.10.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
稀土元素(La,Sm,Tb)合金化铌硅材料显微组织及室温断裂韧度
郭丰伟, 康永旺, 肖程波
北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Microstructure and Room Temperature Fracture Toughness of Nb-Si Materials Alloyed by Rare Earth Elements (La,Sm,Tb)
GUO Feng-wei, KANG Yong-wang, XIAO Cheng-bo
Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(10516 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用真空非自耗电弧熔炼制备添加稀土元素的Nb-20Ti-16Si-3Al-3Cr-2Hf合金纽扣锭,稀土元素为不同含量的Sm,La,Tb。对铸态合金进行微观组织分析和室温断裂韧度测试。结果表明:合金主要由(Nb,Ti)相与Nb5Si3相组成,不同部位存在多种微观组织,粗大的两相组织存在宏观聚集现象;纽扣锭中普遍存在规则的共晶晶胞和以Nb5Si3相为核心的板条状晶胞;共晶晶胞中心为Nb5Si3相和铌固溶体相Nbss组成的层片状组织,外围为粗大的“齿状”两相组织;板条状晶胞的Nb5Si3相核心保留了完整的平直界面和规则的棱角,晶胞外围主要由细小网状的硅化物和粗大的树枝状Nbss相组成。使用多元线性回归分析不同稀土含量与合金室温断裂韧度的关系,不同稀土含量的合金室温断裂韧度值分布在11~15MPa·m1/2之间,多元线性逐步回归分析后得到室温断裂韧度Kq与稀土含量(Sm,La,Tb)的关系为Kq=10.344+6.896La+2.993Sm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丰伟
康永旺
肖程波
关键词 铌硅材料稀土元素微观组织室温断裂韧度    
Abstract:Nb-20Ti-16Si-3Al-3Cr-2Hf alloy was prepared by non-consumable electrode arc-melting, alloyed with different content of rare earth elements La, Sm and Tb. Microstructures and phase composition were analyzed. The results show that (Nb,Ti) and Nb5Si3 are the main phases. Diverse microstructures in different position of the ingots and coarse phase concentration are observed; eutectic grains and lath-like grains with large Nb5Si3 phase as the core widely exist in these ingots; the eutectic grain contains lamellar structure internal and coarse "teeth like" structure external; the Nb5Si3 phase in the center of lath-like grains persists straight interfaces and regular edges, which is surrounded by fine niobium silicide network and coarse dendritic niobium solid solution (Nbss) phase. Multiple linear regression is used to analyze the relationship of REEs' content and room temperature fracture toughness of the alloy,result indicates that room temperature fracture toughness of these ingots is 11-15 MPa·m1/2. The regression equation of REEs' content (Sm, La, Tb) to room temperature fracture toughness Kq is Kq=10.344+6.896La+2.993Sm.
Key wordsNb-Si alloy    rare earth element    microstructure    room temperature fracture toughness
收稿日期: 2015-12-29      出版日期: 2016-10-20
中图分类号:  TG132.3+2  
  TF713.6  
通讯作者: 康永旺(1979-),男,高级工程师,博士,主要从事金属间化合物基超高温结构材料研究,联系地址:北京市81信箱1分箱(100095),E-mail:ywkang1208@126.com     E-mail: ywkang1208@126.com
引用本文:   
郭丰伟, 康永旺, 肖程波. 稀土元素(La,Sm,Tb)合金化铌硅材料显微组织及室温断裂韧度[J]. 材料工程, 2016, 44(10): 8-16.
GUO Feng-wei, KANG Yong-wang, XIAO Cheng-bo. Microstructure and Room Temperature Fracture Toughness of Nb-Si Materials Alloyed by Rare Earth Elements (La,Sm,Tb). Journal of Materials Engineering, 2016, 44(10): 8-16.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.10.002      或      http://jme.biam.ac.cn/CN/Y2016/V44/I10/8
[1] BEWLAY B P, JACKSON M R, ZHAO J C, et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions:A,2003,34:2043-2052.
[2] 李嘉荣,熊继春,唐定中. 先进高温结构材料与技术[M]. 北京:国防工业出版社2012.
[3] BEWLAY B P, JACKSON M R, ZHAO J C, et al. Ultrahigh-temperature Nb-silicide-based composite[J]. MRS Bulletin, 2003,28(9):646-653.
[4] SEKIDO N, KIMURA Y, MIURA S, et al. Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys[J]. Journal of Alloy and Compounds, 2006, 425(1):223-229.
[5] HUANG Q, GUO X P, KANG Y W, et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy[J]. Progress in Natural Science:Materials International, 2011, 21(2):146-152.
[6] 康永旺,曲士昱,宋尽霞,等. 定向凝固速率对Nb-Si系原位复合材料组织和性能的影响[J].金属学报,2008,44(5):593-597. KANG Y W, QU S Y, SONG J X,et al. Effect of directional solidification rate on microstructures and properties of Nb-Si system in situ composites[J]. Acta Metallurgica Sinica, 2008,44(5):593-597.
[7] 王勇,郭喜平.凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J].金属学报,2010,46(4):506-512. WANG Y, GUO X P. Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy[J].Acta Metallurgica Sinica, 2010, 46(4):506-512.
[8] TIAN Y X, GUO J T, ZHOU L Z, et al. Microstructure and room-temperature fracture toughness of cast Nbss/Nb5Si3 composites alloyed with Hf[J].Materials Letters, 2008,62(17):2657-2600.
[9] TIAN Y X, GUO J T, ZHOU L Z,et al. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys[J].Intermetallics, 2008,16:807-812.
[10] GENG J,TSAKIROPOULOS P,SHAO G. Oxidation of Nb-Si-Cr-Al in situ composites with Mo, Ti and Hf additions[J]. Materials Science and Engineering:A, 2006,441(1):26-38.
[11] MURAKAMI T, SASAKI S, ICHIKAWA K, et al. Oxidation resistance of powder compacts of the Nb-Si-Cr system and Nb3Si5Al2matrix compacts prepared by spark plasma sintering[J].Intermetallics, 2001,(9):629-635.
[12] 田玉新, 郭建亭, 周兰章.Dy对Nb-Nb5Si3共晶合金显微组织和力学性能的影响[J].金属学报,2008,44(5):589-592. TIAN Y X, GUO J T, ZHOU L Z. Effect of Dy addition on microstructure and mechanical properties of Nb-Nb5Si3 eutectic alloy[J]. Acta Metallurgica Sinica, 2008, 44(5):589-592.
[13] 艾秀兰,李英民. 稀土元素对Al-Mg2Si合金组织及性能的影响[J]. 铸造,2008,54(3):238-240. AI X L, LI Y M. Influence of RE on microstructure and mechanical property of Al-Mg2Si alloy[J]. Foundry, 2008, 54(3):238-240.
[14] 郭建亭,袁超, 侯介山.稀土元素在NiAl合金中的作用[J].金属学报,2008,44(5):513-520. GUO J T, YUAN C, HOU J S. Effect of rare earth elements on NiAl-based alloys[J]. Acta Metallurgica Sinica, 2008, 44(5):513-520.
[15] 李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版,2001.
[16] 张文彤. SPSS统计分析高级教程[M]. 北京:高等教育出版社,2004.
[17] PUNCREOBUTR C, PHILLION A B, FIFE J L, et al. In situ quantification of the nucleation and growth of Fe-rich intermetallics during Al alloy solidification[J]. Acta Materialia, 2014, 79:292-303.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[3] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[4] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[5] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[6] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[7] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[8] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[11] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[12] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[13] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[14] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn