Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (10): 47-53    DOI: 10.11868/j.issn.1001-4381.2016.10.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能
樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣
南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Microstructure and Tribological Property of MWCNTs/Al Composites by Rotational Friction Extrusion Process
FAN Hao, XING Li, YE Yin, KE Li-ming, FU Xu-rong
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(7347 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用旋转摩擦挤压(RFE)法制备多壁碳纳米管增强铝基(MWCNTs/Al)复合材料,分析MWCNTs/Al复合材料的显微组织、硬度和磨损性能。结果表明:用RFE法可制备具有一定形状尺寸的块体MWCNTs/Al复合材料;复合材料的成形质量好,显微组织为经动态再结晶后的细小等轴晶,MWCNTs在铝合金基体中分布均匀。复合材料的硬度随着MWCNTs体积分数增加先增加后降低,当MWCNTs体积分数为4%时,硬度是经RFE加工后基材的1.2倍。MWCNTs在复合材料磨损过程中起润滑作用,有助于降低MWCNTs/Al复合材料的磨损量提高复合材料的耐磨性。随MWCNTs体积分数的增加,复合材料的磨损率降低,当MWCNTs体积分数大于3%后磨损率变化较小。这是由于MWCNTs体积分数的增加,磨损机制发生变化,即由黏着磨损和轻微磨粒磨损转变为剥层磨损和磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊浩
邢丽
叶寅
柯黎明
傅徐荣
关键词 旋转摩擦挤压复合材料显微组织磨损性能磨损机理    
Abstract:The aluminum matrix composites reinforced with the multi-walled carbon nanotubes (MWCNTs) were fabricated by rotational friction extrusion (RFE) process and the microstructure, hardness and tribological property of the composites were investigated. The results show that the bulk composites with certain dimension can be fabricated by the RFE process. The microstructure of the composites appears as fine equiaxed grain after dynamic recrystallization and the quality is good. The MWCNTs are uniformly distributed in the composites. The hardness of the composites increases firstly and then decreases with the increase of MWCNTs. When the volume fraction of MWCNTs is about 4%, its hardness is about 20% higher than that of the original Al matrix material by RFE process. The lubrication and wear resistance of the composites are changed with the addition of MWCNTs. With the increase of the MWCNTs, the wear rate of the composites is decreased at first, and when the volume fraction of MWCNTs is more than 3%, the wear rate varies little. The wear mechanism is changed, which is from adhesion wear and mild abrasive wear to the delamination wear and abrasive wear with the increase of the MWCNTs.
Key wordsrotational friction extrusion    composite    microstructure    tribological property    wear mechanism
收稿日期: 2016-01-25      出版日期: 2016-10-20
中图分类号:  TB331  
通讯作者: 邢丽(1959-),女,教授,硕士生导师,主要从事特种连接技术、新材料制备技术,联系地址:南昌航空大学航空制造工程学院(330063),E-mail:xingli_59@126.com     E-mail: xingli_59@126.com
引用本文:   
樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
FAN Hao, XING Li, YE Yin, KE Li-ming, FU Xu-rong. Microstructure and Tribological Property of MWCNTs/Al Composites by Rotational Friction Extrusion Process. Journal of Materials Engineering, 2016, 44(10): 47-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.10.007      或      http://jme.biam.ac.cn/CN/Y2016/V44/I10/47
[1] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354:56-58.
[2] WONG E W, SHENHAN P E, LIEBER C M. Nanobeam mechanics:elasticity, strength and toughness of nanorods and nanotubes[J]. Science, 1997, 277:1971-1975.
[3] MORISADA Y, FUJⅡ H, NAGAOKA T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing[J]. Materials Science and Engineering:A, 2006, 419(1-2):344-348.
[4] 杨佼源, 卫习成, 洪晓露, 等, 高含量SiC颗粒增强铝基复合材料的增摩特性研究[J]. 摩擦学学报, 2014, 34(4):446-451. YANG J Y, WEI X C, HONG X L, et al. Dry friction coefficient of high content SiC particle reinforced aluminum matrix composite against commercial friction material[J]. Tribology, 2014, 34(4):446-451.
[5] CHEN X H, PENG J C, LI X Q, et al. Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings[J]. Journal of Materials Science Letters, 2001, 20(22):2057-2060.
[6] 丁雨田, 王冬强, 胡勇,等. Mg2B2O5W,SiC和Gr颗粒增强6061Al基复合材料的摩擦磨损行为[J]. 材料工程, 2015, 43(10):42-48. DING Y T, WANG D Q, HU Y, et al. Friction and wear behavior of Mg2B2O5W,SiC and Gr particles reinforced 6061Al matrix composite[J]. Journal of Materials Engineering, 2015, 43(10):42-48.
[7] ALI A, ALIREZA A, HOOTAN B. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C)[J]. Journal of Alloys and Compounds, 2015, 650:783-793.
[8] 姜金龙, 戴剑锋, 徐金城, 等. 纳米碳管/铝基复合材料的制备及摩擦磨损性能研究[J]. 摩擦学学报, 2007, 27(3):219-223. JIANG J L, DAI J F, XU J C, et al. Fabrication and tribological behavior of carbon nanotube/Al matrix composites[J]. Tribology, 2007, 27(3):219-223.
[9] CHOI H J, LEE S M, BAE D H. Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes[J]. Wear, 2010, 270(1):12-18.
[10] 赵霞, 柯黎明, 徐卫平, 等. 搅拌摩擦加工法制备碳纳米管增强铝基复合材料[J]. 复合材料学报, 2011, 28(2):185-190. ZHAO X, KE L M, XU W P, et al. Friction stir processing preparation of carbon nanotubes reinforced aluminum matrix composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2):185-190.
[11] 涂文斌, 柯黎明, 徐卫平. 搅拌摩擦加工制备MWCNTs/Al复合材料显微结构及硬度[J]. 复合材料学报, 2011, 28(6):142-147. TU W B, KE L M, XU W P. Microstructure and hardness of MWCNTs/Al composite by friction stir processing[J]. Acta Materiae Compositae Sinica, 2011, 28(6):142-147.
[12] 黄科辉, 柯黎明, 邢丽, 等. 旋转摩擦挤压合金化法制备Al3Ti金属间化合物[J]. 稀有金属材料与工程, 2011, 40(10):1812-1816. HUANG K H, KE L M, XING L et al. Al3Ti intermetallic compounds fabricated by rotational extrusion alloying[J]. Rare Metal Materials and Engineering, 2011, 40(10):1812-1816.
[13] 林毛古, 徐卫平, 柯黎明, 等. 旋转摩擦挤压制备MWCNTs/Al复合材料的界面微观结构[J]. 中国有色金属学报, 2015, 25(1):98-102. LIN M G, XU W P, KE L M, et al. Interface microstructures of MWCNTs/Al composites prepared by rotational friction extrusion[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(1):98-102.
[14] 丁志鹏, 张孝彬, 许国良,等. 碳纳米管/铝基复合材料的制备及摩擦性能研究[J]. 浙江大学学报(工学版), 2005, 39(11):1811-1815. DING Z P, ZHANG X B, XU G L, et al. Fabrication and tribological properties of carbon nanotubes-aluminum composites[J]. Journal of Zhejiang University(Engineering Science), 2005, 39(11):1811-1815.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[15] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn