Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (10): 80-87    DOI: 10.11868/j.issn.1001-4381.2016.10.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
马氏体不锈钢的微观组织各向异性对微区应力和氢分布的影响
钟振前1, 田志凌1, 杨春1,2
1. 钢铁研究总院 分析测试所, 北京 100081;
2. 清华大学 材料学院, 北京 100083
Microstructure Anisotropy Effect on Stress and Hydrogen Distribution in Micro Area for Martensitic Stainless Steel
ZHONG Zhen-qian1, TIAN Zhi-ling1, YANG Chun1,2
1. Division of Analysis and Testing, Central Iron and Steel Research Institute, Beijing 100081, China;
2. School of Materials and Engineering, Tsinghua University, Beijing 100083, China
全文: PDF(5937 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用电子背散射衍射(EBSD)实验分析了马氏体组织的微区弹性刚度分布,并在此基础上建立应力-氢交互作用的耦合有限元模型,研究马氏体组织的各向异性对微区应力和氢分布的影响。结果表明:相邻Block板条束之间的取向差互成60°,在同一受力方向上不同Block板条束具有不同的弹性刚度,从而引发组织间的微区应力和氢呈不均匀分布,Block板条束是表征微区应力的组织单元。Block板条束弹性刚度梯度和组织尺寸决定了组织间的应力集中,而应力集中又影响了氢的分布。弹性刚度梯度高和板条束尺寸大的Block组织单元应力集中较为严重,并富集高浓度的氢,最终引发氢致开裂。上述模拟结果与氢脆断口的微观断裂形貌和氢脆裂纹的EBSD分析结果相符。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟振前
田志凌
杨春
关键词 各向异性氢扩散弹性刚度氢脆FEMEBSD    
Abstract:Elastic stiffness distribution of martensite microstructure was analyzed by using Electron Back Scatter Diffraction(EBSD) experiment, based on which the coupled finite element model of stress-hydrogen interaction was established to study the influence of martensitic microstructure anisotropy on the micro local stress and hydrogen distribution. The results show that misorientation between adjacent Block Laths is 60°, and different Block Laths have different elastic stiffness in the same loading direction, which resulted in the heterogeneous distribution of micro stress and hydrogen, and micro stress can be characterized by microstructure element of Block Lath.Elastic stiffness gradient and Block size play a significant role in stress concentration among microstructures, and while stress concentration can affect hydrogen distribution. High elastic stiffness gradient and large size of Block Lath cause high stress concentration, accumulate high concentration of hydrogen, which initiate crack of hydrogen embrittlement in the end. The above results are consistent with micro fracture morphology and EBSD experiment on crack region.
Key wordsanisotropy    hydrogen diffusion    elastic stiffness    hydrogen embrittlement    FEM    EBSD
收稿日期: 2014-12-10      出版日期: 2016-10-20
中图分类号:  TG111.5  
通讯作者: 钟振前(1979-),男,博士,高级工徎师,主要从事材料失效分析研究,联系地址:北京市海淀区高粱桥斜街13号钢铁研究总院(100081),E-mail:13521142587@139.com     E-mail: 13521142587@139.com
引用本文:   
钟振前, 田志凌, 杨春. 马氏体不锈钢的微观组织各向异性对微区应力和氢分布的影响[J]. 材料工程, 2016, 44(10): 80-87.
ZHONG Zhen-qian, TIAN Zhi-ling, YANG Chun. Microstructure Anisotropy Effect on Stress and Hydrogen Distribution in Micro Area for Martensitic Stainless Steel. Journal of Materials Engineering, 2016, 44(10): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.10.012      或      http://jme.biam.ac.cn/CN/Y2016/V44/I10/80
[1] 李永德,徐娜,郭卫民,等. 高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J]. 材料工程,2014,(2):87-98. LI Y D, XU N, GUO W M, et al. The influence of high pressure thermal hydrogen charging on very high cycle fatigue behavior of SUJ2 bearing steel[J]. Journal of Materials Engineering, 2014,(2):87-98.
[2] AKIHIDE N, SHIGERU K, KOJI I, et al. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J]. Scripta Materialia, 2001, 45(10):1227-1232.
[3] 郭昀静,王春芳,李建锡,等. 利用TDS研究二次硬化钢中氢的扩散行为[J]. 航空材料学报,2012,32(3):5-9. GUO Y J, WANG C F, LI J X, et al. Investigation of hydrogen diffusion in secondary hardening steel by means of thermal desorption spectrometry[J]. Journal of Aeronautical Materials, 2012, 32(3):5-9.
[4] ZHANG W S, HOU M Q, WANG H Y, et al. Numerical simulation of diffusivity of hydrogen in thin tubular metallic membranes affected by self-stresses[J]. International Journal of Hydrogen Energy, 2004, 29(11):1165-1172.
[5] KIMURA Y, SAKAI Y, HARA T, et al. Hydrogen induced delayed fracture of ultrafine grained 0.6%O steel with dispersed oxide particles[J]. Scripta Materialia, 2003, 49(11):1111-1116.
[6] HARDIE D, LIU S E.The effect of stress concentration on hydrogen embrittlement of a low alloy steel[J]. Corrosion Science, 1996, 38(5):721-733.
[7] WANG M Q, AKIYAMA E, TSUZAKI K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation[J]. Corrosion Science, 2006, 48(8):2189-2202.
[8] BARNOUSH A, VEHOFF H. Recent development in the study of hydrogen embrittlement:hydrogen effect on dislocation nucleation[J].Acta Materialia, 2010, 58(16):5274-5285.
[9] DOSHIDA T, NAKAMURA M, SAITO H, et al. Hydrogen-enhanced lattice defect formation and hydrogen embrittlement of cyclically prestressed tempered martensitic steel[J]. Acta Materialia,2013, 61(20):7755-7766.
[10] NEERAJ T, SRINIVASAN R, LI J. Hydrogen embrittlement of ferritic steels:observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J].Acta Materialia,2012, 60(13):5160-5171.
[11] ZHAO M J, GUO Z F, CHEN S H, et al. Hydrogen-induced modification in the deformation and fracture of a precipitation-hardened Fe-Ni based austenitic alloy[J]. Journal of Materials Science & Technology, 2014,30(11):1155-1159.
[12] VENEGAS V,CALEYO F, GONZÁLEZ J L, et al. EBSD study of hydrogen induced cracking in API-5-5L-X46 pipeline steel[J]. Scripta Materialia, 2005, 52(2):147-152.
[13] LIM H, LEE M G,KIM J H, et al. Simulation of polycrystal deformation with grain and grain boundary effects[J]. International Journal of Plasticity, 2011, 27(27):1328-1354.
[14] TUNG P V, KATJA J, THOMAS B. Simulation of sheet metal forming incorporating EBSD data[J]. Journal of Materials Processing Technology,2012, 212(12):2659-2668.
[15] NYE J F. Physical Properties of Crystals[M]. London:Oxford University Press, 1985.
[16] THOMAS J H, BRENT L A, DAVID T F, et al. Estimation of the full Nye's tensor and its gradients by micro-mechanical stereo-inference using EBSD dislocation microscopy[J]. International Journal of Plasticity, 2013, 50:146-157.
[17] MURA T. Micromechanics of Defects in Solid[M]. Dordrecht, Holland:Matrinus Nijhoff Publishers, 1987.
[18] LUFRANO J, SOFRONIS P. Enhanced hydrogen concentrations ahead of rounded notches and cracks-competition between plastic strain and hydrostatic stress[J]. Acta Materialia, 1998, 46(5):1519-1526.
[19] ZAKROCZYMSKI T, OWCZAREK E. Electrochemical investigation of hydrogen absorption in a duplex stainless steel[J]. Acta Materialia, 2002, 50(10):2701-2713.
[20] 褚武扬. 氢损伤和滞后断裂[M]. 北京:冶金工业出版社, 1988. CHU W Y.Hydrogen Induced Cracking and Delayed Fracture[M].Beijing:Metallurgical Industry Press,1988.
[21] 孙秦,童小燕,杨庆雄. 多晶体材料微结构弹性性质的数值统计分析[J]. 机械强度,1997, 19(1):37-41. SUN Q, TONG X Y, YANG Q X. Numerical statistical analysis on elastic behaviors of polycrystalline material microstructures[J]. Journal of Mechanical Strength, 1997, 19(1):37-41.
[22] AKIHIDE N, CYNTHIA D S, MOHSEN D, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel[J]. Acta Materialia, 2012, 60(13-14):5182-5189.
[23] MORITO S,TANAKA H, KONISHI R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia, 2003, 51(6):1789-1799.
[24] YOJI M, KOICHI H, HIROKI T, et al. Micro-tension behavior of lath martensite structures of carbon steel[J]. Materials Science and Engineering, 2013, 560(10):535-544.
[25] KITAHARA H, UEJI R, UEDA M, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5):1279-1288.
[26] 权高峰,宋余九. 应力场中氢扩散的实验研究[J]. 中国腐蚀与防护学报, 1993, 13(1):80-85. QUAN G F, SONG Y J. An experimental study on hydrogen diffusion in stress fields[J]. Journal of Chinese Society for Corrosion and Protection, 1993, 13(1):80-85.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[3] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[4] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[5] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[6] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[7] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[8] 韦竺施, 崔丽, 贺定勇, 王智慧, 陈俐. 钢/铝异种合金激光深熔焊接头界面金属间化合物的EBSD研究[J]. 材料工程, 2018, 46(7): 113-120.
[9] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[10] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[11] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[12] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[13] 徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9): 74-79.
[14] 俱海浪, 李宝河, 刘帅, 于广华. Ta/Pt双底层Co/Ni多层膜的反常霍尔效应[J]. 材料工程, 2015, 43(11): 19-23.
[15] 马江南, 杨才福, 王瑞珍. 微合金钢回温变形时的组织转变和铁素体动态再结晶行为[J]. 材料工程, 2015, 43(11): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn