Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (11): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.11.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
单晶铸件凝固过程工艺优化的数值模拟
卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光
中国科学院金属研究所, 沈阳 110016
Numerical Simulation on Parameters Optimization of Single Crystal Castings Solidification Process
LU Yu-zhang, SHEN Jian, ZHENG Wei, XU Zheng-guo, ZHANG Gong, XIE Guang
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3808 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用ProCAST软件系统研究了LMC(Liquid Metal Cooling)以及HRS(High Rate Solidification)工艺下,不同工艺参数对单晶铸件凝固过程中纵向温度梯度、温度梯度角、凝固界面位置的影响。结果表明:HRS工艺受型壳厚度影响很小,型壳表面的辐射散热是HRS工艺的主要影响因素,型壳的导热或者型壳和合金之间的换热是LMC工艺的主要影响因素;提高保温炉温度有利于提高纵向温度梯度;拉速是影响定向凝固最重要的参数,随拉速的增加,单晶铸件的纵向温度梯度先增大后减小,因此,制备不同合金铸件时应当采用不同的拉速;不同浇注温度时,经过10min的静置时间后,单晶铸件的初始温度分布趋于一致,对后续凝固过程影响很小。提出了以纵向温度梯度G//、温度梯度角θ以及凝固界面位置Rp考察定向凝固工艺参数优劣的标准,纵向温度梯度、温度梯度 角、凝固界面位置是评价定向凝固参数优劣的有效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢玉章
申健
郑伟
徐正国
张功
谢光
关键词 定向凝固工艺优化数值模拟    
Abstract:A new method is proposed to evaluate the process parameters by the solid-liquid interface position, thermal gradient angle and the axial thermal gradient. The effects of the process parameters on the solid-liquid interface position, thermal gradient angle and the axial thermal gradient were simulated by ProCAST using LMC(Liquid Metal Cooling) and HRS(High Rate Solidification) processes. The results show that HRS process is little affected by the mold thickness, the dominant heat transfer factor in HRS is radiation from the mold surface, and the dominant heat transfer factor in LMC either mold thermal conductivity or mold-metal interface heat transfer; increasing furnace temperature is beneficial to increase the axial thermal gradient; the withdrawal rate is the most important process parameter which significantly affects the thermal field during solidification, as the withdrawal rate increases, the axial thermal gradient first increases and then decreases, therefore, it is necessary to apply different withdrawal rates for different alloys. After holding 10min at different pouring temperatures, a uniform temperature is achieved, and it has slight influence on the subsequent solidification. It has been put forward that the solid-liquid interface position, thermal gradient angle and the axial thermal gradient can be utilized as a serial of efficient analysis standards for optimization of process conditions independent of casting geometry.
Key wordsdirectional solidification    parameters optimization    numerical simulation
收稿日期: 2014-11-06      出版日期: 2016-11-22
中图分类号:  TG132  
通讯作者: 卢玉章(1984-),男,博士,主要研究方向为LMC定向凝固过程工艺优化,联系地址:沈阳市沈河区文化路72号中国科学院金属研究所高温合金研究部(110016),E-mail:yzlu@imr.ac.cn     E-mail: yzlu@imr.ac.cn
引用本文:   
卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
LU Yu-zhang, SHEN Jian, ZHENG Wei, XU Zheng-guo, ZHANG Gong, XIE Guang. Numerical Simulation on Parameters Optimization of Single Crystal Castings Solidification Process. Journal of Materials Engineering, 2016, 44(11): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/1
[1] 刘林.高温合金精密铸造技术研究进展[J].铸造,2012, 61(11):1273-1285. LIU L. The progress of investment casting of nickle-based superalloy[J]. Foundry, 2012, 61(11):1273-1285.
[2] MURRAY B T, WHEELER A A, GLICKSMAN M E.Simulation of experimentally observed dendritic growth behavior using a phase-field model[J]. Journal of Crystal Growth,1995, 154:386-400.
[3] KONTER M, THUMAANN M. Material and manufacturing of advanced industrial gas turbine component[J]. Journal of Materials Processing Technology, 2001, 117(3): 386-390.
[4] ZHANG J, LOU L H. Directional solidification assisted by liquid metal cooling[J]. Journal of Materials Science and Technology, 2007, 23: 289-300.
[5] 杨亮,李嘉荣,金海鹏,等.DD6单晶精铸薄壁试样定向凝固过程数值模拟[J].材料工程,2014,(11):15-22. YANG L,LI J R,JIN H P, et al. Numerical simulation of directional solidification process of DD6 single crystal superalloy thin-walled specimen[J]. Journal of Materials Engineering, 2014, (11): 15-22.
[6] KERMANPUR A, VARAHRAM N, DAVAMI P, et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process[J]. Metallurgical and Materials Transactions, 2000, 31(6): 1293-1304.
[7] ELLIOTT A J,TIN S, KING W T,et a1.Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004, 35: 3221-3231.
[8] BRUNDIDGE C L, VANDRASKEK D, WANG B, et al. Structure refinement by a liquid metal cooling solidification process for single-crystal nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2012, 43(3): 965-976.
[9] BRUNDIDGE C L, MILLER J D, POLLOCK T M. Development of dendritic structure in the liquid-metal-cooled, directional-solidification process[J]. Metallurgical and Materials Transactions, 2011, 42A: 2723-2732.
[10] 唐宁,闫学伟,许庆彦,等. 基于ProCAST二次开发的叶片LMC凝固特征模拟[J]. 铸造, 2014,63(4): 347-351. TANG N, YAN X W, XU Q Y, et al. Numerical simulation of solidification characteristics of blades by LMC based on secondary development of ProCAST[J]. Foundry, 2014, 63(4): 347-351.
[11] 卢玉章,王大伟,张健,等. 液态金属冷却法制备单晶铸件凝固过程的实验与模拟[J]. 铸造, 2009,58(3):245-248. LU Y Z,WANG D W,ZHANG J, et al. Numerical simulation and experimental observation of single crystal castings processed by liquid metal cooling technique[J]. Foundry, 2009, 58(3): 245-248.
[12] 卢玉章,申健,张健,等.液态金属冷却法制备大尺寸定向燃机叶片凝固过程的实验与模拟[C]//第十二届全国青年材料科学技术研讨会论文集, 南京: 中国材料研究学会,2009:1-9.
[13] 熊继春,李嘉荣,韩梅,等. 浇注温度对DD6单晶高温合金凝固组织的影响[J].材料工程,2009,(2): 43-46. XIONG J C, LI J R,HAN M, et al. Effects of poring temperature on the solidification microstructure of single crystal superalloy DD6[J]. Journal of Materials Engineering, 2009, (2): 43-46.
[14] MILLER J D, POLLOCK T M. Process simulation for the directional solidification of a tri-crystal ring segment via the bridgman and liquid-metal-cooling processes[J]. Metallurgical and Materials Transactions, 2012, 43A: 2411-2425.
[15] 卢玉章, 席会杰,申健,等. 液态金属冷却法制备重型燃机定向结晶空心叶片凝固过程的实验与模拟[J].金属学报,2015,51(5):603-611. LU Y Z, XI H J, SHEN J, et al. Simulation and experiment of the solidification for directionally solidified industrial gas turbine hollow blades prepared by liquid metal cooling[J]. Acta Metallurgica Sinica, 2015, 51(5): 603-611.
[1] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[2] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[3] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[4] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[5] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[6] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[7] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[8] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[9] 王天佑, 王小蒙, 赵子华, 张峥. 热等静压及恢复热处理工艺对DZ125蠕变损伤的影响[J]. 材料工程, 2017, 45(2): 88-95.
[10] 李伟东, 张金栋, 李韶亮, 刘刚, 钟翔屿, 包建文. 耐高温双马来酰亚胺树脂的固化反应动力学和TTT图[J]. 材料工程, 2016, 44(9): 44-51.
[11] 马洛宁, 王天佑, 张峥. 短时氧化对定向凝固高温合金不同取向腐蚀性能的影响[J]. 材料工程, 2016, 44(7): 78-87.
[12] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[13] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[14] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[15] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn