Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers
Fu LI1, Wei-min KANG2, Bo-wen CHENG2,*(), Peng-fei FEI2, Yong-chun DONG1
1 School of Textile, Tianjin Polytechnic University, Tianjin 300387, China 2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.
JIA Z J , WANG J , WANG Y . Research progress of the electrode materials for electrochemical capacitors[J]. Energy Storage Science and Technology, 2014, 3 (4): 322- 338.
YUAN L , WANG C Y , FU Z B , et al. Research progress in electrode materials for supercapacitor[J]. Materials Review, 2010, 24 (9): 11- 14.
3
ZHANG L L , ZHAO X S . Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520- 2531.
doi: 10.1039/b813846j
4
SIMON P , YURY G . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845- 854.
doi: 10.1038/nmat2297
5
PANDOLFO A G , HOLLENKAMP A F . Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157 (1): 11- 27.
doi: 10.1016/j.jpowsour.2006.02.065
6
FRACKOWIAK E , BEGUIN F . Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39 (6): 937- 950.
doi: 10.1016/S0008-6223(00)00183-4
7
LANG X Y , AKIHIKO H , TAKESHI F , et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6 (4): 232- 236.
doi: 10.1038/nnano.2011.13
8
GRAEME A S , PON K , ADAM S B . Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196 (1): 1- 12.
doi: 10.1016/j.jpowsour.2010.06.084
TIAN Y H , FU X T , WU B R . Development of porous carbon materials for electric double-layer capacitor[J]. Chinese Journal of Power Sources, 2002, 26 (6): 466- 469.
YANG Y S , CAO G P . Adjustment to properties of porous carbon for electrochemical capacitors[J]. Battery Bimonthly, 2006, 36 (1): 34- 36.
11
CHO M Y , KIM M H , KIM H K , et al. Electrochemical performance of hybrid supercapacitor fabricated using multi-structured activated carbon[J]. Electrochemistry Communications, 2014, 47, 5- 8.
doi: 10.1016/j.elecom.2014.07.012
12
QU D Y , WANG L L , ZHENG D , et al. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes[J]. Journal of Power Sources, 2014, 269, 129- 135.
doi: 10.1016/j.jpowsour.2014.06.084
13
MA C , LI Y J , SHI J L , et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal, 2014, 249, 216- 225.
doi: 10.1016/j.cej.2014.03.083
14
HAO P , ZHAO Z H , TIAN J , et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6 (20): 12120- 12129.
doi: 10.1039/C4NR03574G
15
De SOUZA V H R , OLIVEIRA M M , ZARBIN A J G . Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces[J]. Journal of Power Sources, 2014, 260, 34- 42.
doi: 10.1016/j.jpowsour.2014.02.070
16
ZHU Y L , SHI K Y , IGOR Z . Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance[J]. Journal of Power Sources, 2014, 268, 233- 239.
doi: 10.1016/j.jpowsour.2014.06.046
17
FAN L Q , LIU G J , WU J H , et al. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes[J]. Electrochemica Acta, 2014, 137, 26- 33.
doi: 10.1016/j.electacta.2014.05.137
18
GAO X L , XING W , ZHOU J , et al. Superior capacitive performance of active carbons derived from enteromorphaprolifera[J]. Electrochemica Acta, 2014, 133, 459- 466.
doi: 10.1016/j.electacta.2014.04.101
19
LI F , KANG W M , CHENG B W , et al. Preparation and catalytic behavior of hollow Ag/carbon nanofibers[J]. Catalysis Communications, 2015, 69, 150- 153.
doi: 10.1016/j.catcom.2015.05.030
20
HWANG K L , EUN H J , CHI K B , et al. One-step preparation of ultrafine poly (acrylonitrile) fibers containing silver nanoparticles[J]. Materials Letters, 2005, 59 (23): 2977- 2980.
doi: 10.1016/j.matlet.2005.05.005
21
AU T H , BEOMSEOK T , JUN S P . Non-woven mats of poly (vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization[J]. Carbohydrate Polymers, 2010, 82 (2): 472- 479.
doi: 10.1016/j.carbpol.2010.05.016
22
KYUNG H H . Preparation and properties of electrospun poly (vinyl alcohol)/silver fiber web as wound dressings[J]. Polymer Engineering& Science, 2007, 47 (1): 43- 49.
WANG Y L , WAN Y Z , CHENG G X , et al. Silver-coating process of activated carbon fiber and its surface morphology[J]. Journal of Materials Engineering, 1998, (8): 28- 30.
24
CHAO D M , CUI L L , ZHANG J F , et al. Preparation of oligoaniline derivative/polyvinyllpyrrolidone nanofibers containing silver nanoparticles[J]. Synthetic Metals, 2009, 159 (5): 537- 540.
25
ZHANG P , SHAO C L , ZHANG Z Y . In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011, 3 (8): 3357- 3363.
doi: 10.1039/c1nr10405e
26
WANG Y H , IGOR Z . Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors[J]. Materials Letters, 2011, 65 (12): 1759- 176.
doi: 10.1016/j.matlet.2011.03.074