Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (11): 61-65    DOI: 10.11868/j.issn.1001-4381.2016.11.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能
杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉
安徽理工大学 材料科学与工程学院, 安徽 淮南 232001
Fabrication and Properties of Poly (lactic acid) Hybrid Composites Synergistic Toughened by Ultra-fine Barium Sulfate and Light Calcium Carbonate
YANG Ji-nian, YANG Shuang-ping, WANG Chuang, SHAO Kai-yun, JIANG Peng-fei, ZHOU Hui
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
全文: PDF(11829 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用熔融共混和模压成型工艺制备超细硫酸钡(BaSO4)和轻质碳酸钙(CaCO3)协同增韧聚乳酸(PLA)混杂材料。在保持CaCO3质量分数恒定的情况下,着重考察了BaSO4的含量对混杂体系的微观结构、力学性能、熔体流动速率和热稳定性的影响。结果表明:适量BaSO4的引入在基体中分散均匀且界面结合良好,显著提高了材料的韧性。当BaSO4的质量分数为15%时,PLA混杂材料的冲击韧度和断裂伸长率较PLA/CaCO3体系分别提高了60.38%和151.90%。随着BaSO4含量的增加,拉伸强度逐渐下降,而弹性模量却持续上升。总体上,BaSO4的引入降低了PLA混杂材料的熔体流动速率,但对PLA的热分解行为影响甚微。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨继年
杨双萍
王闯
邵凯运
江鹏飞
周辉
关键词 聚乳酸硫酸钡力学性能热稳定性增韧    
Abstract:The poly (lactic acid) (PLA) hybrid composites consisted of ultra-fine barium sulfate (BaSO4) and light calcium carbonate (CaCO3) inorganic particles were fabricated via molten blending and compression molding. The effect of BaSO4 mass fraction on the morphologies, mechanical properties, and melt flow rate (MFR) as well as thermal stability of hybrid composites were investigated, under the condition of fixed content of CaCO3. Results show that adequate BaSO4 is dispersed homogenously in the matrix and the inorganic particle-PLA interfacial adhesion is well. PLA is synergistically toughened significantly by BaSO4. With 15% content of BaSO4, the impact toughness and breaking elongation of the PLA hybrid composites are increased by 60.38% and 151.90%, respectively, compared to PLA/CaCO3 sample. As BaSO4 increases, the tensile strength decreases monotonically, while the elastic modulus of samples increases. On the whole, the melt flow rate of the composites is decreased with the presence of BaSO4. However, little effect of BaSO4 on the thermal behavior of PLA is observed.
Key wordspoly (lactic acid)    barium sulfate    mechanical property    thermal stability    toughening
收稿日期: 2015-01-15      出版日期: 2016-11-22
中图分类号:  TQ323.9  
通讯作者: 杨继年(1981-),男,副教授,博士,研究方向是聚合物基复合材料/泡沫材料,联系地址:安徽淮南市安徽理工大学材料科学与工程学院(232001),E-mail:yangjinian@163.com     E-mail: yangjinian@163.com
引用本文:   
杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
YANG Ji-nian, YANG Shuang-ping, WANG Chuang, SHAO Kai-yun, JIANG Peng-fei, ZHOU Hui. Fabrication and Properties of Poly (lactic acid) Hybrid Composites Synergistic Toughened by Ultra-fine Barium Sulfate and Light Calcium Carbonate. Journal of Materials Engineering, 2016, 44(11): 61-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.010      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/61
[1] CHEN X L, WANG L M, SHI J G, et al. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE[J]. Polymers & Polymer Composites, 2010, 18(3): 145-152.
[2] NEZBENOVA E, PONESICKY J, SOVA M. Influence of calcium carbonate on the toughness of polypropylene[J]. Acta Polymerica, 1990, 41(1): 36-42.
[3] FU Q, WANG G. Effect of morphology on brittle-ductile transition of HDPE/CaCO3 blends[J]. Journal of Applied Polymer Science, 1993, 49(11): 1985-1988.
[4] BARTCZAK Z, ARGON A S, COHEN R E, et al. Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles[J]. Polymer, 1999, 40(9): 2347-2365.
[5] NAMPOOTHIRI K M, NAIR N R, JOHN R P. An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101(22): 8493-8501.
[6] ANDERSON K S, SCHRECK K M, HILLMYER M A. Toughening polylactide[J]. Polymer Review, 2008, 48(1): 85-108.
[7] 强涛, 于德梅. 聚乳酸增韧研究进展[J]. 高分子材料科学与工程, 2010, 26(9): 167-170. QIANG T, YU D M. Progress in toughening of PLA[J]. Polymer Materials Science and Engineering, 2010, 26(9): 167-170.
[8] 车晶, 秦凡, 杨荣杰. 聚乳酸/蒙脱土纳米复合材料的原位聚合及表征[J]. 材料工程, 2011, (1): 28-33. CHE J, QIN F, YANG R J. Polylactide/montmorillonite nanocomposites in-situ polymerization and characterization[J]. Journal of Materials Engineering, 2011, (1): 28-33.
[9] HASHIMA K, NISHITSUJI S, INOUE T. Structure-properties of super-tough PLA alloy with excellent heat resistance[J]. Polymer, 2010, 51(17): 3934-3939.
[10] OYAMA H T. Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer[J]. Polymer, 2009, 50(3): 747-751.
[11] 冯玉林, 殷敬华, 姜摇伟, 等. 环氧基团功能化弹性体增韧聚乳酸的性能[J]. 高等学校化学学报, 2012, 33(2): 400-403. FENG Y L, YIN J H, JIANG Y W, et al. Properties of poly (lactic acid) toughened by epoxy-functionalized elastomer[J]. Chemical Journal of Chinese Universities, 2012, 33(2): 400-403.
[12] SU Z Z, LI Q Y, LIU Y J, et al. Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane)[J]. European Polymer Journal, 2009, 45(8): 2428-2433.
[13] SHI Q F, CHEN C, GAO L, et al. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE[J]. Polymer Degradation and Stability, 2011, 96(1): 175-182.
[14] 张留进, 陈广义, 魏志勇, 等. 不同增容剂对POE增韧聚乳酸性能的影响[J]. 高分子材料科学与工程, 2012, 28(6): 57-60. ZHANG L J, CHEN G Y, WEI Z Y, et al. Effect of different compatibilizers on the property of PLA/POE composites[J]. Polymer Materials Science and Engineering, 2012, 28(6): 57-60.
[15] WANG K, WU J S, YE L, et al. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(11-12): 1199-1205.
[16] ZUIDERDUIN W C J, WESTZAAN C, HUETINK J, et al. Toughening of polypropylene with calcium carbonate particles[J]. Polymer, 2003, 44(1): 261-275.
[1] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[4] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[5] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[6] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[7] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[8] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[9] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[10] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[11] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[12] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[15] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn