Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (11): 61-65    DOI: 10.11868/j.issn.1001-4381.2016.11.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能
杨继年(), 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉
安徽理工大学 材料科学与工程学院, 安徽 淮南 232001
Fabrication and Properties of Poly (lactic acid) Hybrid Composites Synergistic Toughened by Ultra-fine Barium Sulfate and Light Calcium Carbonate
Ji-nian YANG(), Shuang-ping YANG, Chuang WANG, Kai-yun SHAO, Peng-fei JIANG, Hui ZHOU
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
全文: PDF(11829 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用熔融共混和模压成型工艺制备超细硫酸钡(BaSO4)和轻质碳酸钙(CaCO3)协同增韧聚乳酸(PLA)混杂材料。在保持CaCO3质量分数恒定的情况下,着重考察了BaSO4的含量对混杂体系的微观结构、力学性能、熔体流动速率和热稳定性的影响。结果表明:适量BaSO4的引入在基体中分散均匀且界面结合良好,显著提高了材料的韧性。当BaSO4的质量分数为15%时,PLA混杂材料的冲击韧度和断裂伸长率较PLA/CaCO3体系分别提高了60.38%和151.90%。随着BaSO4含量的增加,拉伸强度逐渐下降,而弹性模量却持续上升。总体上,BaSO4的引入降低了PLA混杂材料的熔体流动速率,但对PLA的热分解行为影响甚微。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨继年
杨双萍
王闯
邵凯运
江鹏飞
周辉
关键词 聚乳酸硫酸钡力学性能热稳定性增韧    
Abstract

The poly (lactic acid) (PLA) hybrid composites consisted of ultra-fine barium sulfate (BaSO4) and light calcium carbonate (CaCO3) inorganic particles were fabricated via molten blending and compression molding. The effect of BaSO4 mass fraction on the morphologies, mechanical properties, and melt flow rate (MFR) as well as thermal stability of hybrid composites were investigated, under the condition of fixed content of CaCO3. Results show that adequate BaSO4 is dispersed homogenously in the matrix and the inorganic particle-PLA interfacial adhesion is well. PLA is synergistically toughened significantly by BaSO4. With 15% content of BaSO4, the impact toughness and breaking elongation of the PLA hybrid composites are increased by 60.38% and 151.90%, respectively, compared to PLA/CaCO3 sample. As BaSO4 increases, the tensile strength decreases monotonically, while the elastic modulus of samples increases. On the whole, the melt flow rate of the composites is decreased with the presence of BaSO4. However, little effect of BaSO4 on the thermal behavior of PLA is observed.

Key wordspoly (lactic acid)    barium sulfate    mechanical property    thermal stability    toughening
收稿日期: 2015-01-15      出版日期: 2016-11-22
中图分类号:  TQ323.9  
基金资助:安徽省博士后研究人员科研项目(2014B006);安徽省高校省级科研研究项目(KJ2013Z067);安徽省大学生创新创业训练计划项目(201510361268)
通讯作者: 杨继年     E-mail: yangjinian@163.com
作者简介: 杨继年(1981-), 男, 副教授, 博士, 研究方向是聚合物基复合材料/泡沫材料, 联系地址:安徽淮南市安徽理工大学材料科学与工程学院(232001), E-mail:yangjinian@163.com
引用本文:   
杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
Ji-nian YANG, Shuang-ping YANG, Chuang WANG, Kai-yun SHAO, Peng-fei JIANG, Hui ZHOU. Fabrication and Properties of Poly (lactic acid) Hybrid Composites Synergistic Toughened by Ultra-fine Barium Sulfate and Light Calcium Carbonate. Journal of Materials Engineering, 2016, 44(11): 61-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.010      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/61
Fig.1  PLA混杂复合材料冲击断面的微观形貌(a)0% BaSO4; (b)5% BaSO4; (c)15% BaSO4; (d)25% BaSO4
Fig.2  PLA混杂复合材料的冲击韧度和断裂伸长率
Fig.3  PLA混杂复合材料的拉伸强度和弹性模量
Fig.4  PLA混杂复合材料的熔体流动速率
Fig.5  PLA混杂复合材料的TGA (a)和DTG (b)曲线
1 CHEN X L , WANG L M , SHI J G , et al. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE[J]. Polymers & Polymer Composites, 2010, 18 (3): 145- 152.
2 NEZBENOVA E , PONESICKY J , SOVA M . Influence of calcium carbonate on the toughness of polypropylene[J]. Acta Polymerica, 1990, 41 (1): 36- 42.
doi: 10.1002/actp.1990.010410109
3 FU Q , WANG G . Effect of morphology on brittle-ductile transition of HDPE/CaCO3 blends[J]. Journal of Applied Polymer Science, 1993, 49 (11): 1985- 1988.
doi: 10.1002/app.1993.070491115
4 BARTCZAK Z , ARGON A S , COHEN R E , et al. Toughness mechanism in semi-crystalline polymer blends: Ⅱ. High-density polyethylene toughened with calcium carbonate filler particles[J]. Polymer, 1999, 40 (9): 2347- 2365.
doi: 10.1016/S0032-3861(98)00444-3
5 NAMPOOTHIRI K M , NAIR N R , JOHN R P . An overview of the recent developments in polylactide (PLA) research[J]. Bioresource Technology, 2010, 101 (22): 8493- 8501.
doi: 10.1016/j.biortech.2010.05.092
6 ANDERSON K S , SCHRECK K M , HILLMYER M A . Toughening polylactide[J]. Polymer Review, 2008, 48 (1): 85- 108.
doi: 10.1080/15583720701834216
7 强涛, 于德梅. 聚乳酸增韧研究进展[J]. 高分子材料科学与工程, 2010, 26 (9): 167- 170.
7 QIANG T , YU D M . Progress in toughening of PLA[J]. Polymer Materials Science and Engineering, 2010, 26 (9): 167- 170.
8 车晶, 秦凡, 杨荣杰. 聚乳酸/蒙脱土纳米复合材料的原位聚合及表征[J]. 材料工程, 2011, (1): 28- 33.
8 CHE J , QIN F , YANG R J . Polylactide/montmorillonite nanocomposites in-situ polymerization and characterization[J]. Journal of Materials Engineering, 2011, (1): 28- 33.
9 HASHIMA K , NISHITSUJI S , INOUE T . Structure-properties of super-tough PLA alloy with excellent heat resistance[J]. Polymer, 2010, 51 (17): 3934- 3939.
doi: 10.1016/j.polymer.2010.06.045
10 OYAMA H T . Super-tough poly (lactic acid) materials: reactive blending with ethylene copolymer[J]. Polymer, 2009, 50 (3): 747- 751.
doi: 10.1016/j.polymer.2008.12.025
11 冯玉林, 殷敬华, 姜摇伟, 等. 环氧基团功能化弹性体增韧聚乳酸的性能[J]. 高等学校化学学报, 2012, 33 (2): 400- 403.
11 FENG Y L , YIN J H , JIANG Y W , et al. Properties of poly (lactic acid) toughened by epoxy-functionalized elastomer[J]. Chemical Journal of Chinese Universities, 2012, 33 (2): 400- 403.
12 SU Z Z , LI Q Y , LIU Y J , et al. Compatibility and phase structure of binary blends of poly (lactic acid) and glycidyl methacrylate grafted poly (ethylene octane)[J]. European Polymer Journal, 2009, 45 (8): 2428- 2433.
doi: 10.1016/j.eurpolymj.2009.04.028
13 SHI Q F , CHEN C , GAO L , et al. Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE[J]. Polymer Degradation and Stability, 2011, 96 (1): 175- 182.
doi: 10.1016/j.polymdegradstab.2010.10.002
14 张留进, 陈广义, 魏志勇, 等. 不同增容剂对POE增韧聚乳酸性能的影响[J]. 高分子材料科学与工程, 2012, 28 (6): 57- 60.
14 ZHANG L J , CHEN G Y , WEI Z Y , et al. Effect of different compatibilizers on the property of PLA/POE composites[J]. Polymer Materials Science and Engineering, 2012, 28 (6): 57- 60.
15 WANG K , WU J S , YE L , et al. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34 (11-12): 1199- 1205.
16 ZUIDERDUIN W C J , WESTZAAN C , HUETINK J , et al. Toughening of polypropylene with calcium carbonate particles[J]. Polymer, 2003, 44 (1): 261- 275.
doi: 10.1016/S0032-3861(02)00769-3
[1] 常海, 赵聪铭, 王翠菊. 挤压复合AZ91-(SiCP/AZ91)复合板材显微组织和力学性能[J]. 材料工程, 2023, 51(1): 16-25.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰. 搅拌摩擦沉积增材技术研究进展[J]. 材料工程, 2023, 51(1): 52-63.
[4] 王恩茂, 米振莉, 卫志超, 侯晓英, 钟勇. Q&P980镀锌高强钢电阻点焊工艺及液态金属脆化裂纹分布[J]. 材料工程, 2023, 51(1): 85-94.
[5] 程昊, 周炼刚, 刘健, 王宇宁, 仝凌云, 都东. 热输入对Inconel 617镍基高温合金激光焊接接头显微组织与力学性能的影响[J]. 材料工程, 2023, 51(1): 113-121.
[6] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[7] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[8] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[9] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[10] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[11] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[12] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[13] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[14] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[15] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn