Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (11): 78-82    DOI: 10.11868/j.issn.1001-4381.2016.11.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
针刺C/SiC复合材料拉-压疲劳特性与失效机理
方光武1, 高希光1, 宋迎东1,2,*()
1 南京航空航天大学 能源与动力学院江苏省航空动力系统重点实验室, 南京 210016
2 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016
Tension-compression Fatigue Behavior and Failure Mechanism of Needled C/SiC Composite
Guang-wu FANG1, Xi-guang GAO1, Ying-dong SONG1,2,*()
1 Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 State Key Laboratory of Mechanics and Control of Mechanics Structure, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(6799 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

研究了室温下针刺C/SiC复合材料的拉-压疲劳特性,并与其拉-拉疲劳特性进行了对比。结果表明:针刺C/SiC复合材料的拉-压疲劳强度略低于拉-拉疲劳强度;两种循环载荷下都存在迟滞现象,随着循环数的增大迟滞环不断右移,且偏斜程度和包围面积不断增大。采用扫描电子显微镜对失效试件的断口形貌和微观结构的观察表明:除了垂直于加载方向的基体开裂以及界面脱粘,拉-压循环加载下的细观失效机制还包括平行于加载方向的基体开裂以及层间的开裂。这些平行于加载方向的损伤使得纤维受力状态恶化,最终削弱了针刺C/SiC复合材料拉-压疲劳强度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方光武
高希光
宋迎东
关键词 针刺C/SiC复合材料拉-压疲劳断口形貌细观机理    
Abstract

The tension-compression fatigue behavior for needled C/SiC composite at room temperature was studied and compared with the properties under tension-tension fatigue loading. The results show that the tension-compression fatigue strength of the needled C/SiC composites is slightly lower than that under tension-tension loading. Hysteresis phenomenon can be observed under both loading stations. The loops move to the right and their slopes and areas increase as the cycles increase. The microstructure of the composites and the morphology of the fractured surfaces of the failure specimens can be observed by SEM. It shows that in addition to the matrix cracking and interface debonding, which is vertical to the loading direction, the meso failure mechanism under tension-compression cyclic loading also includes matrix cracking and interlayer delamination parallel to loading direction, which can make the stress state within fibers worse and finally weakens the fatigue strength of needled C/SiC composites under tension-compression loading.

Key wordsneedled C/SiC composite    tension-compression fatigue    fracture morphology    microstructural mechanism
收稿日期: 2015-07-20      出版日期: 2016-11-22
中图分类号:  TB332  
基金资助:国家自然科学基金(51575261);航空科学基金(2012ZB52027);南京航空航天大学校博士学位论文创新与创优基金(BCXJ14-02)
通讯作者: 宋迎东     E-mail: ydsong@nuaa.edu.cn
作者简介: 宋迎东(1969-), 男, 教授, 博导, 主要研究方向包括:航空发动机结构强度设计与分析; 航空发动机结构疲劳与断裂; 先进复合材料结构设计等, 联系地址:江苏省南京市秦淮区御道街29号南京航空航天大学能源与动力学院(210016), E-mail:ydsong@nuaa.edu.cn
引用本文:   
方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11): 78-82.
Guang-wu FANG, Xi-guang GAO, Ying-dong SONG. Tension-compression Fatigue Behavior and Failure Mechanism of Needled C/SiC Composite. Journal of Materials Engineering, 2016, 44(11): 78-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.013      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/78
Fig.1  针刺C/SiC复合材料细观结构
Fig.2  力学性能测试试件形状及尺寸
Testing type No Fatigue stress/MPa N/cycle
Tension-tension 4# 150 22
5# 145 401
6# 140 37667
7# 135 200000
8# 130 200000
Tension-compression 9# 145 232
10# 140 1045
11# 135 2516
12# 130 4773
13# 125 200000
14# 120 200000
Table 1  针刺C/SiC复合材料试件疲劳实验测试条件
Fig.3  针刺C/SiC复合材料静拉伸应力-应变曲线
Fig.4  针刺C/SiC复合材料疲劳迟滞回线(a)拉-拉疲劳;(b)拉-压疲劳
Fig.5  针刺C/SiC复合材料拉-拉和拉-压疲劳S-N曲线
Fig.6  针刺C/SiC复合材料试件失效断口形貌(a)拉-拉疲劳;(b)拉-压疲劳
Fig.7  针刺C/SiC复合材料拉-压疲劳失效试件断口细观结构特征SEM照片(a)界面脱粘;(b)层间裂纹
Fig.8  针刺C/SiC复合材料疲劳失效机理示意图
1 SOLTI J P. Modeling of progressive damage in fiber-reinforced ceramic matrix composites[D]. Ohio: Air Force Institute of Technology, 1996.
2 卢国锋, 乔生儒, 许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, (11): 107- 112.
2 LU G F , QIAO S R , XU Y . Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials Engineering, 2014, (11): 107- 112.
3 高希光, 宋迎东, 孙志刚. 陶瓷基复合材料高精度宏细观统一本构模型研究[J]. 航空动力学报, 2008, (9): 1617- 1622.
3 GAO X G , SONG Y D , SUN Z G . Multi-scale constitute model for ceramic matrix composite by high fidelity generalized method of cell[J]. Journal of Aerospace Power, 2008, (9): 1617- 1622.
4 MALL S , TRACY G D . Characterization of fatigue behavior in quasi-isotropic laminate of ceramic composite[J]. Journal of Reinforced Plastics and Composites, 1992, 11 (3): 243- 260.
doi: 10.1177/073168449201100302
5 EVANS A G , ZOK F W , MCMEEKING R M . Fatigue of ceramic matrix composites[J]. Acta Metallurgica et Materialia, 1995, 43 (3): 859- 875.
doi: 10.1016/0956-7151(94)00304-Z
6 张美忠, 李贺军, 李克智. 三维编织复合材料的力学性能研究现状[J]. 材料工程, 2004, (2): 44- 48.
6 ZHANG M Z , LI H J , LI K Z . Progressing in the study on mechanical properties of the 3D braided composites[J]. Journal of Materials Engineering, 2004, (2): 44- 48.
7 RUGGLES-WRENEN M B , CHRISTENSEN D T , CHAMBERLAIN A L , et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71 (2): 190- 196.
doi: 10.1016/j.compscitech.2010.11.008
8 孙志刚, 许仁红, 宋迎东. 陶瓷基复合材料低循环拉-拉疲劳寿命预测[J]. 机械工程学报, 2012, 48 (12): 31- 36.
doi: 10.3901/JME.2012.12.031
8 SUN Z G , XU R H , SONG Y D . Low cycle tensile-tensile fatigue life prediction of ceramic matrix composites[J]. Journal of Mechanical Engineering, 2012, 48 (12): 31- 36.
doi: 10.3901/JME.2012.12.031
9 方光武, 高希光, 宋迎东. 单向纤维增强陶瓷基复合材料界面滑移规律[J]. 复合材料学报, 2013, 30 (4): 101- 107.
9 FANG G W , GAO X G , SONG Y D . Interface slip distribution of unidirectional fiber-reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (4): 101- 107.
10 GAO X , FANG G , SONG Y . Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B, 2014, 56, 92- 99.
doi: 10.1016/j.compositesb.2013.08.063
11 杜双明, 乔生儒. 基于电阻变化的3D C/SiC复合材料疲劳损伤演化[J]. 复合材料学报, 2011, 28 (2): 165- 169.
11 DU S M , QIAO S R . Damage evolution of 3D C/SiC composite during tension-tension fatigue based on variation of electric resistance[J]. Acta Materiae Compositae Sinica, 2011, 28 (2): 165- 169.
12 FRUEHMANN R K , DULIEU-BARTON J M , QUINN S . Assessment of fatigue damage evolution in woven composite materials using infra-red techniques[J]. Composites Science and Technology, 2010, 70 (6): 937- 946.
doi: 10.1016/j.compscitech.2010.02.009
13 MAILLET E , GODIN N , R'MILI M , et al. Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites: towards rupture time prediction[J]. Composites Science and Technology, 2012, 72 (9): 1001- 1007.
doi: 10.1016/j.compscitech.2012.03.011
14 STAEHLER J M , MALL S , ZAWADA L P . Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature[J]. Composites Science and Technology, 2003, 63 (15): 2121- 2131.
doi: 10.1016/S0266-3538(03)00190-8
15 MALL S , WEIDENAAR W A . Tension-compression fatigue behaviour of fibre-reinforced ceramic matrix composite with circular hole[J]. Composites, 1995, 26 (9): 631- 636.
doi: 10.1016/0010-4361(95)98911-4
16 KIM T T , MALL S , ZAWADA L P , et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44 (25): 2991- 3016.
doi: 10.1177/0021998310373519
17 MEI H , CHENG L . Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon, 2009, 47 (4): 1034- 1042.
doi: 10.1016/j.carbon.2008.12.025
18 OPALSKI F A , MALL S . Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composite[J]. Journal of Reinforced Plastics and Composites, 1994, 13 (7): 617- 636.
doi: 10.1177/073168449401300702
19 RUGGLES-WRENEN M B , JONES T P . Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200℃ in air and in steam[J]. International Journal of Fatigue, 2013, 47, 154- 160.
doi: 10.1016/j.ijfatigue.2012.08.006
[1] 杨洋, 陈新文, 孙炜, 马丽婷, 王翔, 郭广平. 基于数字图像相关方法的CFRP层合板高温压缩性能实验研究[J]. 材料工程, 2021, 49(11): 62-72.
[2] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[3] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[4] 田文扬, 刘奋, 韦春华, 夏卫生, 杨云珍. DP980高强钢动态拉伸力学行为[J]. 材料工程, 2017, 45(3): 47-53.
[5] 张晓雯, 吴南, 张旋, 马丽婷, 厉蕾. 透明聚碳酸酯材料疲劳断裂行为[J]. 材料工程, 2017, 45(11): 30-35.
[6] 马少华, 王勇刚, 回丽, 许良. 湿热环境对碳纤维环氧树脂复合材料弯曲性能的影响[J]. 材料工程, 2016, 44(2): 81-87.
[7] 吕世泉, 何国球, 沈月, 田丹丹, 刘晓山, 林国斌, 任敬东, 胡杰. 菱形加载路径下35CrMoA钢的微动疲劳行为[J]. 材料工程, 2016, 44(1): 96-102.
[8] 许天旱, 冯耀荣. III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响[J]. 材料工程, 2015, 43(9): 66-73.
[9] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[10] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[11] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[12] 严李李, 房现石, 梁永锋, 叶丰, 林均品. Fe-6.5%Si合金冷轧薄板的冲压性能[J]. 材料工程, 2012, 0(6): 28-31.
[13] 陈邦峰, 贾泮江. ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J]. 材料工程, 2010, 0(9): 1-6,24.
[14] 纪伟, 范亚夫, 陈捷, 王军. 温度对Mg-10Gd-2Y-0.5Zr合金动态拉伸行为及断裂机理的影响[J]. 材料工程, 2009, 0(10): 41-44.
[15] 贾泮江, 唐辉, 陈邦峰. 铸造方法对ZL210A铸造铝合金力学性能和断口形貌的影响[J]. 材料工程, 2008, 0(1): 30-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn