1 Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 State Key Laboratory of Mechanics and Control of Mechanics Structure, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
The tension-compression fatigue behavior for needled C/SiC composite at room temperature was studied and compared with the properties under tension-tension fatigue loading. The results show that the tension-compression fatigue strength of the needled C/SiC composites is slightly lower than that under tension-tension loading. Hysteresis phenomenon can be observed under both loading stations. The loops move to the right and their slopes and areas increase as the cycles increase. The microstructure of the composites and the morphology of the fractured surfaces of the failure specimens can be observed by SEM. It shows that in addition to the matrix cracking and interface debonding, which is vertical to the loading direction, the meso failure mechanism under tension-compression cyclic loading also includes matrix cracking and interlayer delamination parallel to loading direction, which can make the stress state within fibers worse and finally weakens the fatigue strength of needled C/SiC composites under tension-compression loading.
LU G F , QIAO S R , XU Y . Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials Engineering, 2014, (11): 107- 112.
GAO X G , SONG Y D , SUN Z G . Multi-scale constitute model for ceramic matrix composite by high fidelity generalized method of cell[J]. Journal of Aerospace Power, 2008, (9): 1617- 1622.
4
MALL S , TRACY G D . Characterization of fatigue behavior in quasi-isotropic laminate of ceramic composite[J]. Journal of Reinforced Plastics and Composites, 1992, 11 (3): 243- 260.
doi: 10.1177/073168449201100302
5
EVANS A G , ZOK F W , MCMEEKING R M . Fatigue of ceramic matrix composites[J]. Acta Metallurgica et Materialia, 1995, 43 (3): 859- 875.
doi: 10.1016/0956-7151(94)00304-Z
ZHANG M Z , LI H J , LI K Z . Progressing in the study on mechanical properties of the 3D braided composites[J]. Journal of Materials Engineering, 2004, (2): 44- 48.
7
RUGGLES-WRENEN M B , CHRISTENSEN D T , CHAMBERLAIN A L , et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71 (2): 190- 196.
doi: 10.1016/j.compscitech.2010.11.008
SUN Z G , XU R H , SONG Y D . Low cycle tensile-tensile fatigue life prediction of ceramic matrix composites[J]. Journal of Mechanical Engineering, 2012, 48 (12): 31- 36.
doi: 10.3901/JME.2012.12.031
FANG G W , GAO X G , SONG Y D . Interface slip distribution of unidirectional fiber-reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (4): 101- 107.
10
GAO X , FANG G , SONG Y . Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B, 2014, 56, 92- 99.
doi: 10.1016/j.compositesb.2013.08.063
DU S M , QIAO S R . Damage evolution of 3D C/SiC composite during tension-tension fatigue based on variation of electric resistance[J]. Acta Materiae Compositae Sinica, 2011, 28 (2): 165- 169.
12
FRUEHMANN R K , DULIEU-BARTON J M , QUINN S . Assessment of fatigue damage evolution in woven composite materials using infra-red techniques[J]. Composites Science and Technology, 2010, 70 (6): 937- 946.
doi: 10.1016/j.compscitech.2010.02.009
13
MAILLET E , GODIN N , R'MILI M , et al. Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites: towards rupture time prediction[J]. Composites Science and Technology, 2012, 72 (9): 1001- 1007.
doi: 10.1016/j.compscitech.2012.03.011
14
STAEHLER J M , MALL S , ZAWADA L P . Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature[J]. Composites Science and Technology, 2003, 63 (15): 2121- 2131.
doi: 10.1016/S0266-3538(03)00190-8
15
MALL S , WEIDENAAR W A . Tension-compression fatigue behaviour of fibre-reinforced ceramic matrix composite with circular hole[J]. Composites, 1995, 26 (9): 631- 636.
doi: 10.1016/0010-4361(95)98911-4
16
KIM T T , MALL S , ZAWADA L P , et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44 (25): 2991- 3016.
doi: 10.1177/0021998310373519
17
MEI H , CHENG L . Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon, 2009, 47 (4): 1034- 1042.
doi: 10.1016/j.carbon.2008.12.025
18
OPALSKI F A , MALL S . Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composite[J]. Journal of Reinforced Plastics and Composites, 1994, 13 (7): 617- 636.
doi: 10.1177/073168449401300702
19
RUGGLES-WRENEN M B , JONES T P . Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200℃ in air and in steam[J]. International Journal of Fatigue, 2013, 47, 154- 160.
doi: 10.1016/j.ijfatigue.2012.08.006