Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (11): 96-100    DOI: 10.11868/j.issn.1001-4381.2016.11.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
g-C3N4/NiO复合材料的制备及其对AP热分解的影响
谈玲华1,2, 徐建华2, 寇波1,2, 杭祖圣1,2, 石丽丽2, 王钧2
1. 江苏省先进结构材料与应用技术重点实验室, 南京 211167;
2. 南京工程学院 材料工程学院, 南京 211167
Preparation of g-C3N4/NiO Composites and Its Effect on Thermal Decomposition of Ammonium Perchlorate
TAN Ling-hua1,2, XU Jian-hua2, KOU Bo1,2, HANG Zu-sheng1,2, SHI Li-li2, WANG Jun2
1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China;
2. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
全文: PDF(1427 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过混合煅烧法制备出g-C3N4/NiO复合材料,采用X射线衍射(XRD)、红外光谱(FT-IR)、场发射扫描电子显微镜(FESEM)、X射线能谱(EDS)对其结构和形貌进行表征,利用差热分析(DTA)和热失重(TG)研究其对高氯酸铵(AP)热分解的影响。结果表明:纳米NiO均匀分散于g-C3N4的表面,g-C3N4/NiO使AP的高温和低温分解峰合并,高温分解温度降低62.5℃,表现出良好的催化作用。g-C3N4/NiO的复合催化效果优于单独使用g-C3N4或NiO,说明g-C3N4和NiO具有协同催化作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谈玲华
徐建华
寇波
杭祖圣
石丽丽
王钧
关键词 g-C3N4/NiO高氯酸铵催化性能热分解协同作用    
Abstract:g-C3N4/NiO composites were prepared by a simple mixing-calcination method. The structure and morphology of g-C3N4/NiO were characterized by X-ray Diffraction(XRD), Fourier Transform Infrared Spectrometer(FT-IR), Field Emission Scanning Electron Microscopy(FESEM) and Energy Dispersive X-ray spectroscopy(EDS). The catalytic effect of g-C3N4/NiO on thermal decomposition of ammonium perchlorate(AP) was investigated by Differential Thermal Analysis(DTA) and Thermo Gravimetric Analysis (TG). The results show that nanometer NiO is uniformly dispersed on the surface of g-C3N4, g-C3N4/NiO composites make the two decomposition peaks of AP combine and the high-temperature decomposition peak value of AP decrease by 62.5℃, which exhibits good catalytic performance. The catalytic activity of g-C3N4/NiO is much higher than that of single-phase g-C3N4 and NiO, clearly demonstrating a synergistic effect between g-C3N4 and NiO.
Key wordsg-C3N4/NiO    ammonium perchlorate    catalysis    thermal decomposition    synergistic effect
收稿日期: 2015-01-19      出版日期: 2016-11-22
中图分类号:  TB321  
通讯作者: 谈玲华(1978-),女,副教授,博士,从事纳米材料制备及性能研究,联系地址:南京市江宁科学园弘景大道1号南京工程学院材料工程学院(211167),E-mail:tanlinghua@njit.edu.cn     E-mail: tanlinghua@njit.edu.cn
引用本文:   
谈玲华, 徐建华, 寇波, 杭祖圣, 石丽丽, 王钧. g-C3N4/NiO复合材料的制备及其对AP热分解的影响[J]. 材料工程, 2016, 44(11): 96-100.
TAN Ling-hua, XU Jian-hua, KOU Bo, HANG Zu-sheng, SHI Li-li, WANG Jun. Preparation of g-C3N4/NiO Composites and Its Effect on Thermal Decomposition of Ammonium Perchlorate. Journal of Materials Engineering, 2016, 44(11): 96-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.016      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/96
[1] ALGARA-SILLER G, SEVERIN N, CHONG S Y, et al. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor[J]. Angewandte Chemie, 2014, 126(29): 7580-7585.
[2] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2008, 8(1): 76-80.
[3] XU J, BRENNER T J, CHABANNE L, et al. Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with Voc exceeding 1 V[J]. Journal of the American Chemical Society, 2014, 136(39): 13486-13489.
[4] LI X, WANG Y, KANG L, et al. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination[J]. Journal of Catalysis, 2014, 311: 288-294.
[5] ZHANG J, ZHANG M, YANG C, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Advanced Materials, 2014, 26(24): 4121-4126.
[6] ZHENG Y, LIN L, YE X, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edition, 2014, 53(44): 11926-11930.
[7] SCHWINGHAMMER K, MESCH M B, DUPPEL V, et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution[J]. Journal of the American Chemical Society, 2014, 136(5): 1730-1733.
[8] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401.
[9] HUANG Z, LI F, CHEN B, et al. Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion[J]. Applied Catalysis B: Environmental, 2013, 136-137: 269-277.
[10] TALAPANENI S N, ANANDAN S, MANE G P, et al. Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution[J]. Journal of Materials Chemistry, 2012, 22(19): 9831-9840.
[11] WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89.
[12] SU F, MATHEW S C, LIPNER G, et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light[J]. Journal of the American Chemical Society, 2010, 132(46): 16299-16301.
[13] MA T Y, DAI S, JARONIEC M, et al. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2014, 53(28): 7281-7285.
[14] NIU P, YIN L, YANG Y, et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Advanced Materials, 2014, 26(47): 8046-8052.
[15] LIU G, NIU P, SUN C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. Journal of the American Chemical Society, 2010, 132(33): 11642-11648.
[16] LI X, CHEN J, WANG X, et al. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons[J]. Journal of the American Chemical Society, 2011, 133(21): 8074-8077.
[17] HUANG Z A, SUN Q, LV K, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2[J]. Applied Catalysis B: Environmental, 2015, 164: 420-427.
[18] CHEN S, HU Y, MENG S, et al. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3[J]. Applied Catalysis B: Environmental, 2014, 150-151: 564-573.
[19] LI T, ZHAO L, HE Y, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B: Environmental, 2013, 129: 255-263.
[20] SUN L, ZHAO X, JIA C, et al. Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies[J]. Journal of Materials Chemistry, 2012, 22(44): 23428-23438.
[21] LIU L L, LI F S, TAN L H, et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(1): 34-38.
[22] 谈玲华,李勤华,杭祖圣,等. 负载型纳米NiO催化高氯酸铵热分解的DSC/TG-MS研究[J]. 功能材料, 2011, 42(3): 564-567. TAN L H, LI Q H, HANG Z S, et al. Catalytic effect of supported nanometer NiO on the thermal decomposition of ammonium perchlorate by DSC/TG-MS[J]. Journal of Functional Materials, 2011, 42(3): 564-567.
[23] SHI H, CHEN G, ZHANG C, et al. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catalysis, 2014, 4(10): 3637-3643.
[24] KIM H, JEONG H, KIM T, et al. Enhanced ethanol sensing characteristics of In2O3-decorated NiO hollow nanostructures via modulation of hole accumulation layers[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18197-18204.
[25] ZHANG J, CHEN X, TAKANABE K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie International Edition, 2010, 49(2): 441-444.
[26] VIJAYAKUMAR S, NAGAMUTHU S, MURALIDHARAN G. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2188-2196.
[27] HUANG L, XU H, LI Y, et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(24): 8606-8616.
[28] BOLDYREV V V. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36.
[29] ZHANG W, LI P, XU H, et al. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3 nanoparticles[J]. Journal of Hazardous Materials, 2014, 268: 273-280.
[30] SUN J, YUAN Y, QIU L, et al. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Transactions, 2012, 41(22): 6756-6763.
[31] THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 40(9):4893-4908.
[32] 谈玲华,李勤华,杭祖圣,等. 纳米NiO/MgO的制备及其对AP热分解催化性能影响[J]. 固体火箭技术, 2011, 34(2): 214-219. TAN L H, LI Q H, HANG Z S, et al. Preparation of nanometer NiO/MgO and its catalytic performance for thermal decomposition of ammonium perchlorate[J]. Journal of Solid Rocket Technology, 2011, 34(2): 214-219.
[33] GAO Y, WANG L, LI Z, et al. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate[J]. Solid State Sciences, 2014, 35: 62-65.
[1] 曾凡达, 李纲. 花状CdO微球的制备及其对高氯酸铵热分解的催化性能[J]. 材料工程, 2020, 48(6): 91-97.
[2] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[5] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[6] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[7] 宗志芳, 杨麟, 张浩, 熊磊. 环境协调型Ce-La/TiO2复合材料的制备及光-湿-热性能[J]. 材料工程, 2018, 46(5): 145-150.
[8] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[9] 张浩. 基于光催化性能的Cu-Ce/TiO2湿性能[J]. 材料工程, 2018, 46(1): 114-118.
[10] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[11] 谭德新, 徐远, 王艳丽, 疏瑞文, 邢宏龙. 聚二苯基二苯乙炔基硅烷树脂的制备与非等温热分解[J]. 材料工程, 2017, 45(7): 77-83.
[12] 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45(12): 99-105.
[13] 刘淑玲, 韩晓莉, 仝建波. Ag/InP复合材料的制备、表征及其性能[J]. 材料工程, 2017, 45(10): 18-22.
[14] 李金灵, 朱世东, 屈撑囤, 马海霞, 吕雷, 王珂. 超级13Cr马氏体不锈钢在单质硫环境中的腐蚀行为[J]. 材料工程, 2016, 44(3): 84-91.
[15] 史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn