Preparation of g-C3N4/NiO Composites and Its Effect on Thermal Decomposition of Ammonium Perchlorate
Ling-hua TAN1,2,*(), Jian-hua XU2, Bo KOU1,2, Zu-sheng HANG1,2, Li-li SHI2, Jun WANG2
1 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China 2 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
g-C3N4/NiO composites were prepared by a simple mixing-calcination method. The structure and morphology of g-C3N4/NiO were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectrometer (FT-IR), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray spectroscopy (EDS). The catalytic effect of g-C3N4/NiO on thermal decomposition of ammonium perchlorate (AP) was investigated by Differential Thermal Analysis (DTA) and Thermo Gravimetric Analysis (TG). The results show that nanometer NiO is uniformly dispersed on the surface of g-C3N4, g-C3N4/NiO composites make the two decomposition peaks of AP combine and the high-temperature decomposition peak value of AP decrease by 62.5℃, which exhibits good catalytic performance. The catalytic activity of g-C3N4/NiO is much higher than that of single-phase g-C3N4 and NiO, clearly demonstrating a synergistic effect between g-C3N4 and NiO.
ALGARA-SILLER G , SEVERIN N , CHONG S Y , et al. Triazine-based graphitic carbon nitride: a two-dimensional semiconductor[J]. Angewandte Chemie, 2014, 126 (29): 7580- 7585.
doi: 10.1002/ange.201402191
2
WANG X , MAEDA K , THOMAS A , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2008, 8 (1): 76- 80.
3
XU J , BRENNER T J , CHABANNE L , et al. Liquid-based growth of polymeric carbon nitride layers and their use in a mesostructured polymer solar cell with Voc exceeding 1 V[J]. Journal of the American Chemical Society, 2014, 136 (39): 13486- 13489.
doi: 10.1021/ja508329c
4
LI X , WANG Y , KANG L , et al. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination[J]. Journal of Catalysis, 2014, 311, 288- 294.
doi: 10.1016/j.jcat.2013.12.006
5
ZHANG J , ZHANG M , YANG C , et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Advanced Materials, 2014, 26 (24): 4121- 4126.
doi: 10.1002/adma.v26.24
6
ZHENG Y , LIN L , YE X , et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edition, 2014, 53 (44): 11926- 11930.
doi: 10.1002/anie.201407319
7
SCHWINGHAMMER K , MESCH M B , DUPPEL V , et al. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution[J]. Journal of the American Chemical Society, 2014, 136 (5): 1730- 1733.
doi: 10.1021/ja411321s
8
YAN S C , LI Z S , ZOU Z G . Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25 (17): 10397- 10401.
doi: 10.1021/la900923z
9
HUANG Z , LI F , CHEN B , et al. Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion[J]. Applied Catalysis B: Environmental, 2013, 136-137, 269- 277.
doi: 10.1016/j.apcatb.2013.01.057
10
TALAPANENI S N , ANANDAN S , MANE G P , et al. Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution[J]. Journal of Materials Chemistry, 2012, 22 (19): 9831- 9840.
doi: 10.1039/c2jm30229b
11
WANG Y , WANG X , ANTONIETTI M . Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51 (1): 68- 89.
doi: 10.1002/anie.201101182
12
SU F , MATHEW S C , LIPNER G , et al. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light[J]. Journal of the American Chemical Society, 2010, 132 (46): 16299- 16301.
doi: 10.1021/ja102866p
13
MA T Y , DAI S , JARONIEC M , et al. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2014, 53 (28): 7281- 7285.
doi: 10.1002/anie.201403946
14
NIU P , YIN L , YANG Y , et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Advanced Materials, 2014, 26 (47): 8046- 8052.
doi: 10.1002/adma.v26.47
15
LIU G , NIU P , SUN C , et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. Journal of the American Chemical Society, 2010, 132 (33): 11642- 11648.
doi: 10.1021/ja103798k
16
LI X , CHEN J , WANG X , et al. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons[J]. Journal of the American Chemical Society, 2011, 133 (21): 8074- 8077.
doi: 10.1021/ja200997a
17
HUANG Z A , SUN Q , LV K , et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2[J]. Applied Catalysis B: Environmental, 2015, 164, 420- 427.
doi: 10.1016/j.apcatb.2014.09.043
18
CHEN S , HU Y , MENG S , et al. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3[J]. Applied Catalysis B: Environmental, 2014, 150-151, 564- 573.
doi: 10.1016/j.apcatb.2013.12.053
19
LI T , ZHAO L , HE Y , et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B: Environmental, 2013, 129, 255- 263.
doi: 10.1016/j.apcatb.2012.09.031
20
SUN L , ZHAO X , JIA C , et al. Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies[J]. Journal of Materials Chemistry, 2012, 22 (44): 23428- 23438.
doi: 10.1039/c2jm34965e
21
LIU L L , LI F S , TAN L H , et al. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2004, 29 (1): 34- 38.
doi: 10.1002/(ISSN)1521-4087
TAN L H , LI Q H , HANG Z S , et al. Catalytic effect of supported nanometer NiO on the thermal decomposition of ammonium perchlorate by DSC/TG-MS[J]. Journal of Functional Materials, 2011, 42 (3): 564- 567.
23
SHI H , CHEN G , ZHANG C , et al. Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catalysis, 2014, 4 (10): 3637- 3643.
doi: 10.1021/cs500848f
24
KIM H , JEONG H , KIM T , et al. Enhanced ethanol sensing characteristics of In2O3-decorated NiO hollow nanostructures via modulation of hole accumulation layers[J]. ACS Applied Materials & Interfaces, 2014, 6 (20): 18197- 18204.
25
ZHANG J , CHEN X , TAKANABE K , et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie International Edition, 2010, 49 (2): 441- 444.
doi: 10.1002/anie.200903886
26
VIJAYAKUMAR S , NAGAMUTHU S , MURALIDHARAN G . Supercapacitor studies on NiO nanoflakes synthesized through a microwave route[J]. ACS Applied Materials & Interfaces, 2013, 5 (6): 2188- 2196.
27
HUANG L , XU H , LI Y , et al. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42 (24): 8606- 8616.
doi: 10.1039/c3dt00115f
28
BOLDYREV V V . Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443 (1): 1- 36.
doi: 10.1016/j.tca.2005.11.038
29
ZHANG W , LI P , XU H , et al. Thermal decomposition of ammonium perchlorate in the presence of Al (OH)3·Cr (OH)3 nanoparticles[J]. Journal of Hazardous Materials, 2014, 268, 273- 280.
doi: 10.1016/j.jhazmat.2014.01.016
30
SUN J , YUAN Y , QIU L , et al. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light[J]. Dalton Transactions, 2012, 41 (22): 6756- 6763.
doi: 10.1039/c2dt12474b
31
THOMAS A , FISCHER A , GOETTMANN F , et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 40 (9): 4893- 4908.
TAN L H , LI Q H , HANG Z S , et al. Preparation of nanometer NiO/MgO and its catalytic performance for thermal decomposition of ammonium perchlorate[J]. Journal of Solid Rocket Technology, 2011, 34 (2): 214- 219.
33
GAO Y , WANG L , LI Z , et al. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate[J]. Solid State Sciences, 2014, 35, 62- 65.
doi: 10.1016/j.solidstatesciences.2014.06.014