Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (11): 101-106    DOI: 10.11868/j.issn.1001-4381.2016.11.017
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
MgH2-K2Ti6O13-Ni球磨复合体系的微观结构与解氢性能
张健1,2, 汤旺1, 邵磊1, 余小峰1,2, 龙春光1,2, 陈荐3
1. 长沙理工大学 汽车与机械工程学院, 长沙 410114;
2. 工程车辆轻量化与可靠性技术湖南省高校重点实验室, 长沙 410114;
3. 能源高效清洁利用湖南省高校重点实验室, 长沙 410114
Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems
ZHANG Jian1,2, TANG Wang1, SHAO Lei1, YU Xiao-feng1,2, LONG Chun-guang1,2, CHEN Jian3
1. College of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
2. Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle, Education Department of Hunan Province, Changsha 410114, China;
3. Key Laboratory of Efficient and Clean Energy Utilization, Education Department of Hunan Province, Changsha 410114, China
全文: PDF(6523 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械球磨法制备了K2Ti6O13晶须单独掺杂、以及K2Ti6O13晶须与Ni粉复合掺杂的MgH2储氢复合体系,并通过XRD,SEM,DSC等检测手段对其微观结构与解氢性能进行表征。结果表明:当K2Ti6O13晶须单独掺杂于MgH2时,K2Ti6O13晶须起到助磨细化MgH2晶粒的作用,同时还抑制了MgH2颗粒的团聚,有效降低了MgH2基体的解氢温度,且当K2Ti6O13与MgH2质量配比为3:7时,MgH2解氢性能的改善效果尤为明显,其解氢温度较纯MgH2球磨体系降低了近75℃;此外,当K2Ti6O13晶须和Ni粉末复合掺杂于MgH2时,得益于K2Ti6O13晶须的助磨细化MgH2晶粒以及Ni固溶于MgH2晶格致使其结构稳定性降低的双重作用,从而使得MgH2基体的解氢温度较K2Ti6O13晶须单独掺杂时进一步降低,相对于纯MgH2球磨体系降低了近87℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张健
汤旺
邵磊
余小峰
龙春光
陈荐
关键词 MgH2掺杂K2Ti6O13Ni解氢性能    
Abstract:The K2Ti6O13 whisker separate-doped and K2Ti6O13 whisker and Ni powder multi-doped MgH2 hydrogen storage composite systems were prepared by mechanical milling method. The microstructures and dehydrogenation properties of the prepared samples were characterized by some testing methods such as X-ray diffraction (XRD), scanning electron microscope (SEM) and differential scanning calorimeter (DSC). The results show that the K2Ti6O13 whisker not only plays the roles in refining the MgH2 crystalline grain, but also inhibit the agglomeration of MgH2 particles in K2Ti6O13 whisker separate-doped system, which results in the decreased dehydrogenation temperature of MgH2 matrix. When the mass ratio of K2Ti6O13 to MgH2 is 3:7, the improvement effect on dehydrogenation properties of MgH2 is the most remarkable. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker separate-doped system is decreased by nearly 75℃. For K2Ti6O13 whisker and Ni powder multi-dopedsystem, the dehydrogenation temperature of MgH2 matrix is further decreased compared to K2Ti6O13 whisker separate-doped one due to the dual effects of refined MgH2 crystalline grain by K2Ti6O13 whisker and destabilized MgH2 lattice by Ni solution. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker and Ni powder multi-doped system is decreased by nearly 87℃.
Key wordsMgH2    doping    K2Ti6O13    Ni    dehydrogenation property
收稿日期: 2015-08-04      出版日期: 2016-11-22
中图分类号:  TG139.7  
通讯作者: 张健(1980-),男,博士,副教授,主要从事先进能源材料理论设计与制备方面的研究工作,联系地址:湖南省长沙市雨花区万家丽南路2段960号长沙理工大学汽车与机械工程学院(410114),E-mail:zj4343@163.com     E-mail: zj4343@163.com
引用本文:   
张健, 汤旺, 邵磊, 余小峰, 龙春光, 陈荐. MgH2-K2Ti6O13-Ni球磨复合体系的微观结构与解氢性能[J]. 材料工程, 2016, 44(11): 101-106.
ZHANG Jian, TANG Wang, SHAO Lei, YU Xiao-feng, LONG Chun-guang, CHEN Jian. Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems. Journal of Materials Engineering, 2016, 44(11): 101-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.11.017      或      http://jme.biam.ac.cn/CN/Y2016/V44/I11/101
[1] NOGITA K, TRAN X Q, YAMAMOTO T, et al. Evidence of the hydrogen release mechanism in bulk MgH2[J]. Scientific Reports, 2015, 5: 8450-8454.
[2] 李志宝, 孙立贤, 张莹洁, 等. MgH2储氢热力学研究进展[J]. 中国科学: 化学, 2014, 44: 964-972. LI Z B, SUN L X, ZHANG Y J, et al. Progress on hydrogen storage thermodynamic of MgH2[J]. Scientia Sinica Chimica, 2014, 44: 964-972.
[3] NORBERG N S, ARTHUR T S, FREDRICK S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society, 2011,133: 10679-10681.
[4] LI W Y, LI C S, MA H, et al. Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption[J]. Journal of the American Chemical Society, 2007,129: 6710-6711.
[5] FLORIANO R, LEIVA D R, DELEDDA S, et al. MgH2-based nanocomposites prepared by short-time high energy ball milling followed by cold rolling: a new processing route[J]. International Journal of Hydrogen Energy, 2014, 39: 4404-4413.
[6] TAKAHASHI K, ISOBE S, OHNUKI S. The catalytic effect of Nb, NbO and Nb2O5 with different surface planes on dehydrogenation in MgH2: density functional theory study[J]. Journal of Alloys and Compounds, 2013, 580: S25-S28.
[7] 周广有, 郑时有, 方方, 等. Ti掺杂的MgH2和Mg2NiH4的放氢性能[J]. 化学学报, 2008, 66: 1037-1041. ZHOU G Y, ZHENG S Y, FANG F, et al. Hydrogen desorption performance of Ti-mediated MgH2 and Mg2NiH4[J]. Acta Chimica Sinica, 2008, 66: 1037-1041.
[8] SKRIPNYUK V M, RABKIN E. Mg3Cd: a model alloy for studying the destabilization of magnesium hydride[J]. International Journal of Hydrogen Energy, 2012, 37: 10724-10732.
[9] ZHANG Q A, LIU D D, WANG Q Q, et al. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase[J]. Scripta Materialia, 2011, 65:233-236.
[10] 张同环, 周仕学, 牛海丽, 等. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53. ZHANG T H, ZHOU S X, NIU H L, et al. Microstructure and hydrogen storage properties of nanostructured Mg-Al alloy from reactive milling with carbon as milling aid[J]. Journal of Materials Engineering, 2015, 43(3): 48-53.
[11] PONTHIEU M, CALIZZI M, PASQUINI L, et al. Synthesis by reactive ball-milling and cycling properties of MgH2-TiH2 nanocomposites: kinetics and isotopic effects[J]. International Journal of Hydrogen Energy, 2014, 39: 9918-9923.
[12] SANTOS S F, ISHIKAWA T T, BOTTA W J, et al. MgH2+FeNb nanocomposites for hydrogen storage[J]. Materials Chemistry and Physics, 2014, 147: 557-562.
[13] LUO R Y, NI Y F, LI J S, et al. The mechanical and thermal insulating properties of resin-derived carbon foams reinforced by K2Ti6O13 whiskers[J]. Materials Science and Engineering: A, 2011, 528: 2023-2027.
[14] 华熳煜,李益民,李夏. 六钛酸钾(K2Ti6O13)晶须几何构型、能量及电子结构的第一性原理计算[J]. 人工晶体学报, 2011, 40: 1573-1579. HUA M Y, LI Y M, LI X. First-principles calculation of the geometric configuration, energies and electronic structures of potassium hexatitanate whisker[J]. Journal of Synthetic Crystals, 2011, 40: 1573-1579.
[15] ZHANG J, SUN L Q, ZHOU Y C, et al. Dehydrogenation thermodynamics of magnesium hydride doped with transition metals: experimental and theoretical studies[J]. Computational Materials Science, 2015, 98: 211-219.
[1] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[2] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[3] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[4] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[5] 李忠裕, 李云同, 吴雯倩, 刘玲, 彭超华, 袁丛辉, 戴李宗. 磷掺杂中空碳球的制备及其电容性能[J]. 材料工程, 2020, 48(3): 105-111.
[6] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[7] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[8] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[9] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[12] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[13] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[14] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[15] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn