Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (12): 1-6    DOI: 10.11868/j.issn.1001-4381.2016.12.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
CNTs修饰及其增强Cu基复合材料的研究
张文忠, 蔡晓兰, 周蕾, 王子阳
昆明理工大学 冶金与能源工程学院, 昆明 650000
CNTs Modified and Enhanced Cu Matrix Composites
ZHANG Wen-zhong, CAI Xiao-lan, ZHOU Lei, WANG Zi-yang
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650000, China
全文: PDF(4191 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 碳纳米管(CNTs)经不同方法修饰后,通过湿式球磨法制备2%-CNTs/Cu(体积分数,下同)复合粉体,再通过H2退火-冷压烧结工艺制得2%-CNTs/Cu复合材料。结果表明:球磨短切后CNTs的长度变短,端口被打开,无定型碳增多,而混酸纯化后CNTs表面的杂质完全被除去,引入大量含氧活性基团;湿式球磨法可以将CNTs嵌入Cu基体中,并与其紧密结合形成片状复合结构,再经H2退火处理后得到超细晶复合粉体;短切和纯化都有利于CNTs在Cu基体的分散与结合,其中短切CNTs纯化后制得复合材料的抗拉强度和维氏硬度最高,分别为296MPa和139.8HV,较基体提高了123.6%和42.9%,归因于细晶强化和载荷传递。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文忠
蔡晓兰
周蕾
王子阳
关键词 碳纳米管湿式球磨修饰分散铜基复合材料    
Abstract:The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.
Key wordsCNTs    wet ball milling    modification    dispersion    Cu matrix composite
收稿日期: 2015-03-05      出版日期: 2016-12-16
中图分类号:  TB333  
通讯作者: 蔡晓兰(1965-),女,教授,博士生导师,从事复合材料制备及高能球磨设备开发方面的研究工作,联系地址:云南省昆明市学府路296号昆明理工大学矿业大楼301(650093),E-mail:cxl9761@163.com     E-mail: cxl9761@163.com
引用本文:   
张文忠, 蔡晓兰, 周蕾, 王子阳. CNTs修饰及其增强Cu基复合材料的研究[J]. 材料工程, 2016, 44(12): 1-6.
ZHANG Wen-zhong, CAI Xiao-lan, ZHOU Lei, WANG Zi-yang. CNTs Modified and Enhanced Cu Matrix Composites. Journal of Materials Engineering, 2016, 44(12): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.12.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I12/1
[1] BERBER S,KWON Y K,TOMANEK D.Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84(20):4613-4616.
[2] TREACY M M J,EBBESEN T W,GIBSON J M.Exceptionally high young's modulus observed for individual carbon nanotubes[J].Nature,1996,381(6584):678-680.
[3] HARRIS P J F.Carbon nanotube composites[J].Int Mater Rev,2004,49(1):31-43.
[4] DONG S R,TU J P,ZHANG X B.An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J].Mater Sci Eng:A,2001,313(1-2):83-87.
[5] KIM K T,CHA S I,HONG S H,er al.Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J].Mater Sci Eng:A,2006,430(1-2):27-33.
[6] CHA S I,KIM K T,ARSHAD S N,et al.Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J].Adv Mater,2005,17:1377-1381.
[7] KIM K T,ECKERT J,MENZEL S B,et al.Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites[J].Appl Phys Lett,2008,92(12):121901-3.
[8] SULE R,OLUBAMBI P A,SIGALAS I V,et al.Effect of SPS consolidation parameters on submicron Cu and Cu-CNT composites for thermal management[J].Powder Technology,2014,258(6):198-205.
[9] SHUKLA A K,NAYAN N,MURTY S V S N,et al.Processing of copper-carbon nanotube composites by vacuum hot pressing technique[J].Mater Sci Eng:A,2013,560:365-371.
[10] 聂俊辉,贾成厂,张亚丰,等.机械球磨与放电等离子体烧结制备碳纳米管/铜复合材料[J].粉末冶金工业,2011,21(5):44-50. NIE J H,JIA C C,ZHANG Y F,et al.Fabrication of carbon nanotubes/copper composites using mechanical milling and spark plasma sintering[J].Powder Metallurgy Industry,2011,21(5):44-50.
[11] 孟飞,裴燕斌,果世驹.轧制对碳纳米管弥散强化铜基复合材料微观组织的影响[J].粉末冶金材料科学与工程,2005,10(1):55-59. MENG F,PEI Y B,GUO S J.Effects of rolling on microstructure of carbon nanotube dispersion strengthened copper alloys[J].Materials Science and Engineering of Powder Metallurgy,2005,10(1):55-59.
[12] DATSYUKA V,KALYVAA M,PAPAGELISB K.Chemical oxidation of multiwalled carbon nanotubes[J].Carbon,2008,46(6):833-840.
[13] AZARGOHAR R,DALAI A K.Biochar as a precursor of activated carbon[J].Applied Biochemistry and Biotechnology,2006,13(1):762-773.
[14] BINIAK G S,SZYMAÑSKI G,SIEDLEWSKI A,et al.The characterization of activated carbons with oxygen and nitrogen surface groups[J].Carbon,1997,35(12):1799-1810.
[15] 周金梅,李海燕,林国栋,等.多壁碳纳米管的纯化及其表面含氧基团的表征[J].物理化学学报,2010,26(11):3080-3086. ZHOU J M,LI H Y,LIN G D,et al.Purification of multiwalled carbon nanotubes and characterization of their oxygen-containing surface groups[J].Acta Phys-Chim Sin,2010,26(11):3080-3086.
[16] 陈萍,张鸿斌,林国栋,等.催化裂解CH4或CO制碳纳米管结构性能的谱学表征[J].高等学校化学学报,1998,19(5):765-769. CHEN P,ZHANG H B,LIN G D,et al.Studies on structure and property of carbon-nanotubes formed catalytically from decomposition of CH4 or CO[J].Chemical Journal of Chinese Universities,1998,19(5):765-769.
[17] ZENG Y,YING Z,DU J H,et al.Effects of carbon nanotubes on processing stability of polyoxymethylene in melt-mixing process[J].Phys Chem C,2007,111(37):13945-13950.
[18] SHUKLA A K,NAYAN N,MURTY S V S N,et al.Processing copper-carbon nanotube composite powders by high energy milling[J].Materials Characterization,2013,84:58-66.
[19] 钟群鸣,赵子华.断口学[M].北京:高等教育出版社,2006.197-199.
[1] 董伟, 孟瑶, 许富民, 韩阳, 王延洋, 陈楷. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[4] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[7] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[8] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[9] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[10] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[11] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[12] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[13] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[14] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[15] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn