Abstract:By correction to the thermodynamic calculation based on E0-pH diagram of MnSO4-SO42--H2O plating system, effective pH value range for anodic electrodeposition of MnO2 phase structure materials got clear, at 363K, with Mn2+ concentration 0.2mol·dm-3. The influence law of the pH values was also obtained based on the characterization of the oxide structure and test of its electrochemical performance. The results show that pH value in the 0.33-3.4 range, with its increase and accordingly the conducive to the effective deposition of MnO2 type Mn-Mo oxide. However, although with pH value increasing, deposition efficiency improves, the coating quality gets degraded, especially making the electrocatalytic performance of the oxide obviously deteriorated. It also shows that with pH value of plating solution 0.5, obtained Mn-Mo oxide has excellent coating quality and high electrocatalytic activity. The reason is closely related to competition in oxygen evolution reaction during the preparation of the oxide. When pH value is small, oxygen evolution reaction competition causes the solid-liquid interface stirring, the dendritic growth of oxide gets inhabited and the diffusion layer gets thinning, which promotes the nucleation of oxide on the electrode micro-surface and makes grain refined, so as to improves the electrocatalytic performance of oxide.
史艳华, 赵杉林, 梁平, 王玲, 关学雷. pH值对阳极电沉积Mn-Mo氧化物结构与性能的影响[J]. 材料工程, 2016, 44(12): 7-12.
SHI Yan-hua, ZHAO Shan-lin, LIANG Ping, WANG Ling, GUAN Xue-lei. Effect of pH Value on Structure and Properties of Anodic Electrodeposited Mn-Mo Oxide. Journal of Materials Engineering, 2016, 44(12): 7-12.
[1] 危震坤,华小珍,肖可,等.四种晶型MnO2超级电容器电极材料的电化学性能研究[J].电化学,2015,21(4):393-398. WEI Z K,HUA X Z,XIAO K,et a1.An investigation on electrochemical performances of super capacitor electrode materials prepared by MnO2 with four different crystal forms[J].Journal of Electrochemistry,2015,21(4):393-398.
[2] CHEN J B,WANG Y W,HE X M,et al.Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries[J].Electrochemical Acta,2014,142:152-156.
[3] GHODBANE O,PASCA1 J L,FAVIER F.Microstructural effects on charge-storage properties in MnO2-based electrochemical super capacitors[J].ACS Applied Materials & Interfaces,2009,1(5):1130-1139.
[4] 陈野,赵文丽,温青.阳极电沉积Ti/MnO2电极及其苯酚降解的电催化性能[J].电化学,2011,17(2):200-202. CHEN Y,ZHAO W L,WEN Q.Anode electrode position of Ti/MnO2 electrode and electro catalytic oxidization properties of phenol degradation[J].Electrochemistry,2011,17(2):200-202.
[5] 张艺冉,周笑绿,谭小文.Ti/SnO2+SbOx/MnO2(Ce)电极制备及性能表征[J].材料导报,2015,29(2):26-30. ZHANG Y R,ZHOU X L,TAN X W.Studies on preparation and performance of titanium based MnO2 electrode doped with element cerium[J].Materials Review,2015,29(2):26-30.
[6] 田颖,阎景旺,刘小雪,等.活性炭表面担载氧化锰复合电极的电化学电容性能[J].物理化学学报,2010,26(8):2151-2157. TIAN Y,YAN J W,LIU X X,et al.Electrochemical capacitance of composites with MnOx loaded on the surface of activated carbon electrodes[J].Acta Phys-Chim Sin,2010,26(8):2151-2157.
[7] 苏小辉,余林,程高,等.水热合成法制备超级电容器用二氧化锰薄膜电极[J].材料导报,2015,29(5):18-21. SU X H,YU L,CHENG G,et al.Hydrothermally synthesized manganese dioxide film as supercapacitor electrode[J].Materials Review,2015,29(5):18-21.
[8] 高强,刘亚菲,胡中华,等.氧化锰表面改性活性炭电极材料的电化学特性[J].物理化学学报,2009,25(2):229-236. GAO Q,LIU Y F,HU Z H,et al.Electrochemical properties of manganese oxide surface modified activated carbon electrode materials[J].Acta Phys-Chim Sin,2009,25(2):229-236.
[9] ADELKHANI H,GHAEMI M.Characterization of manganese dioxide electrodeposited by pulse and direct current for electrochemical capacitor[J].Journal of Alloys and Compounds,2010,493:175-178.
[10] 朱刚,李江涛.空心海胆状MnO2的低温水热制备及其电容性质[J].人工晶体学报,2015,44(3):790-794. ZHU G,LI J T.Preparation and capacitive properties of MnO2 hollow urchin by low-temperature hydrothermal method[J].Journal of Synthetic Crystals,2015,44(3):790-794.
[11] 余晓.电沉积纳米氧化锰电极材料及其电化学性能研究[J].南阳理工学院学报,2015,5(3):91-94. YU X.Study of electrode position of nanostructure MnO2 for electrode material and their relectrochemical performances[J].Journal of Nanyang Institute of Technology,2015,5(3):91-94.
[12] HABAZAKI H,MSTSUI T,KAWASHIMA A,et al.Nanocrystalline manganese-molybdenum tungsten oxide anodes for oxygen evolution in seawater electrolysis[J].Scripta Mater,2001,44(8-9):1659-1662.
[13] ABDEL G N A,KUMAGAI N,MEGURO S,et al.Oxygen evolution anodes composed of anodic alloy deposited Mn-Mo-Fe oxides for seawater electrolysis[J],Electrochemical Acta,2002,48(1):21-28.
[14] XIE X Y,LIU W W,ZHAO L Y,et al.Structural and electrochemical behavior of Mn-V oxide synthesized by a novel precipitation method[J].J Solid State Electrochem,2010,14(9):1585-1594.
[15] 付花荣,孟惠民,史艳华,等.掺杂元素对锰混合氧化物阳极析氧抑氯性能的影响[J].北京科技大学学报,2008,30(11):359-365. FU H R,MENG H M,SHI Y H,et al.Influence of doped elements on the property of manganese mixed oxide anode for oxygen production by electrolyzing seawater[J].Journal of University of Science and Technology Beijing,2008,30(11):359-365.
[16] HEN Y C,WANG J W,SHI X C,et al.Electrochemical fabrication of porous manganese-cobalt oxide films for electrochemical capacitors[J].J Appl Electrochem,2015,45:495-501.
[17] 杨萍,满瑞林,肖琴,等.锰电沉积中添加剂作用过程研究[J].中国锰业,2013,31(2):21-26. YANG P,MAN R L,XIAO Q,et al.Process of the additives'work in manganese electro deposition[J].China's Manganese Industry,2013,31(2):21-26.
[18] 史艳华,孟惠民.IrO2基体上阳极电沉积MnO2的电化学行为[J].物理化学学报,2011,27(2):461-467. SHI Y H,MENG H M.Electrochemical behavior of IrO2 electrodes in the anodic electrode-position of MnO2[J].Acta Phys-Chim Sin,2011,27(2):461-467.
[19] 林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2010. LIN Y Z,YANG D J.Corrosion and Corrosion Control Principle[M].Beijing:China Petrochemical Press,2010.
[20] SAVINELL R F,ZELLER R L,ADAMS J A.Electrochemically active surface area voltammetric charge correlations for ruthenium and iridium dioxide electrodes[J].Electrochem Soc,1990,137(4):489-493.
[21] 王桂峰,黄因慧,田宗军,等.点阳极电沉积枝晶的分形生长[J].中国有色金属学报,2009,19(11):2011-2017. WANG G F,HUANG Y H,TIAN Z J,et al.Fractal growth of dendrite electrodeposited by point anode[J].The Chinese Journal of Nonferrous Metals,2009,19(11):2011-2017.