Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (12): 48-53    DOI: 10.11868/j.issn.1001-4381.2016.12.008
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
RGO/ZnO纳米棒复合材料的合成及光催化性能
芦佳1, 王辉虎1,2,*(), 董一帆1, 常鹰3, 马新国4, 董仕节1,2
1 湖北工业大学 机械工程学院, 武汉 430068
2 湖北工业大学 绿色轻工材料湖北省重点实验室, 武汉 430068
3 湖北工业大学 材料学院, 武汉 430068
4 湖北工业大学 理学院, 武汉 430068
Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites
Jia LU1, Hui-hu WANG1,2,*(), Yi-fan DONG1, Ying CHANG3, Xin-guo MA4, Shi-jie DONG1,2
1 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
3 School of Materials Science and Technology, Hubei University of Technology, Wuhan 430068, China
4 School of Science, Hubei University of Technology, Wuhan 430068, China
全文: PDF(4491 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用水热合成法制备ZnO纳米棒及RGO/ZnO纳米棒复合材料。研究不同含量的RGO对RGO/ZnO纳米棒复合材料光催化活性的影响。采用X射线衍射仪(XRD)、场发射电子显微镜(FESEM)、光电子能谱仪(XPS)及漫反射紫外-可见吸收光谱(UV-Vis)检测手段对RGO/ZnO进行表征。结果显示:RGO与ZnO纳米棒成功复合。加入GO的含量不同,获得的RGO/ZnO样品在可见光区域的吸光度值不同。以甲基橙作为模拟污染物的光催化结果表明,RGO/ZnO复合材料具有高的紫外-可见光光降解效率,加入GO与ZnO的质量比为3%时,样品紫外-可见光光催化性能最佳,120min内甲基橙基本可以完全降解;且在波长大于400nm可见光照射下,RGO/ZnO具有一定的可见光活性,180min内其降解甲基橙效率最大可达26.2%。同时,RGO/ZnO具有较好的光稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
芦佳
王辉虎
董一帆
常鹰
马新国
董仕节
关键词 还原石墨烯ZnO光催化甲基橙    
Abstract

ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD), field emission electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO) as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm), and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.

Key wordsreduced graphene oxide    ZnO    photocatalysis    methyl orange
收稿日期: 2015-01-09      出版日期: 2016-12-16
基金资助:国家自然科学基金资助项目(51202064,51472081);湖北省自然科学基金资助项目(2013CFA085);武汉市青年晨光科技计划资助项目(2013070104010016)
通讯作者: 王辉虎     E-mail: wanghuihu@126.com
作者简介: 王辉虎(1978-),男,副教授,博士,研究方向为纳米材料制备与性能,联系地址:湖北省武汉市洪山区南湖李纸路一村1号湖北工业大学机械工程学院(430068),E-mail:wanghuihu@126.com
引用本文:   
芦佳, 王辉虎, 董一帆, 常鹰, 马新国, 董仕节. RGO/ZnO纳米棒复合材料的合成及光催化性能[J]. 材料工程, 2016, 44(12): 48-53.
Jia LU, Hui-hu WANG, Yi-fan DONG, Ying CHANG, Xin-guo MA, Shi-jie DONG. Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites. Journal of Materials Engineering, 2016, 44(12): 48-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.12.008      或      http://jme.biam.ac.cn/CN/Y2016/V44/I12/48
Fig.1  RGO,ZnO和RGO/ZnO样品的XRD谱图
Fig.2  RGO/ZnO样品的FESEM图
(a)1%RGO/ZnO;(b)3%RGO/ZnO;(c)5%RGO/ZnO;(d)7%RGO/ZnO
Fig.3  3%RGO/ZnO样品的C1s
(a),O1s(b)和Zn2p(c) XPS谱图
Fig.4  RGO,ZnO和RGO/ZnO样品的UV-Vis谱图
Fig.5  ZnO和RGO/ZnO样品紫外-可见光降解MO曲线
Fig.6  ZnO和RGO/ZnO样品可见光降解MO曲线
Fig.7  3%RGO/ZnO样品5次循环降解MO图
1 SAFA S, SARRAF-MAMOORY R, AZIMIRAD R Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film[J]. Physica E: Low-dimensional Systems and Nanostruc-tures, 2014, 57, 155- 160.
doi: 10.1016/j.physe.2013.10.029
2 KUMAR K, CHITKARA M, SANDHU S I, et al Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route[J]. Journal of Alloys and Compounds, 2014, 588, 681- 689.
doi: 10.1016/j.jallcom.2013.11.127
3 LI D, HUANG J F, CAO L Y, et al Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties[J]. Ceramics International, 2014, 40 (2): 2647- 2653.
doi: 10.1016/j.ceramint.2013.10.061
4 PANT H R, PANT B, KIM H J, et al A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants[J]. Ceramics International, 2013, 39 (3): 5083- 5091.
5 HUANG K, LI Y H, LIN S, et al A facile route to reduced graphene oxide-zinc oxide nanorod composites with enhanced photocatalytic activity[J]. Powder Technology, 2014, 257 (5): 113- 119.
6 LIU Y, HU Y, ZHOU M, et al Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Applied Catalysis B: Environmental, 2012, 125 (33): 425- 431.
7 LAI Y, MENG M, YU Y, et al One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation[J]. Applied Catalysis B: Environmental, 2010, 100 (3-4): 491- 501.
doi: 10.1016/j.apcatb.2010.08.027
8 LI P, WEI Z, WU T, et al Au-ZnO hybrid nanopyramids and their photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133 (15): 5660- 5663.
doi: 10.1021/ja111102u
9 KUNDU P, DESHPANDE P A, MADRAS G, et al Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J]. Journal of Materials Chemistry, 2011, 21 (12): 4209- 4216.
doi: 10.1039/c0jm03116j
10 SHI L, LIANG L, MA J, et al Improved photocatalytic performance over AgBr/ZnO under visible light[J]. Superlattices and Microstructures, 2013, 62, 128- 139.
doi: 10.1016/j.spmi.2013.07.013
11 ZHOU Q, ZHONG Y H, CHEN X, et al Mesoporous anatase TiO2/reduced graphene oxide nanocomposites: a simple template-free synthesis and their high photocatalytic performance[J]. Materials Research Bulletin, 2014, 51 (2): 244- 250.
12 WANG X W, ZHOU L, LI F ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue[J]. New Carbon Materials, 2013, 28 (6): 408- 413.
doi: 10.1016/S1872-5805(13)60090-6
13 HUANG Q, TIAN S, ZENG D, et al Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J]. ACS Catalysis, 2013, 3 (7): 1477- 1485.
doi: 10.1021/cs400080w
14 ZENG B, CHEN X, LUO Y, et al Graphene spheres loaded urchin-like CuxO (x=1 or 2) for use as a high performance photocatalyst[J]. Ceramics International, 2014, 40 (3): 5055- 5059.
doi: 10.1016/j.ceramint.2013.09.021
15 KAVERI S, THIRUGNANAM L, DUTTAB M, et al Thiourea assisted one-pot easy synthesis of CdS/rGO composite by the wet chemical method: structural, optical, and photocatalytic properties[J]. Ceramics International, 2013, 39 (8): 9207- 9214.
doi: 10.1016/j.ceramint.2013.05.025
16 LI X, XU X, XIA F, et al Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor[J]. Electrochimica Acta, 2014, 130 (4): 305- 313.
17 NAGARAJU G, EBELING G, GONCALVES R V, et al Controlled growth of TiO2 and TiO2-RGO composite nanoparticles inionic liquids for enhanced photocatalytic H2 generation[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378 (11): 213- 220.
18 LIU X, PAN L, ZHAO Q, et al UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)[J]. Biochemical Engineering Journal, 2012, 183 (4): 238- 243.
19 ZHANG L, DU L, CAI X, et al Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle-graphene hybrids[J]. Physica E: Low-dimensional Systems and Nanostructures, 2013, 47 (5): 279- 284.
20 DONG S, LI Y, SUN J, et al Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole[J]. Materials Chemistry and Physics, 2014, 145 (3): 357- 365.
doi: 10.1016/j.matchemphys.2014.02.024
21 薄小庆, 刘唱白, 何越, 等 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程, 2014, (8): 86- 89.
21 BO X Q, LIU C B, HE Y, et al Fabrication and gas sensing properties of porous ZnO nanorods[J]. Journal of Materials Engineering, 2014, (8): 86- 89.
22 HUMMERS W S Jr, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339- 1339.
doi: 10.1021/ja01539a017
23 RUAN C, ZHANG L, QIN Y, et al Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light[J]. Materials Letters, 2015, 141, 362- 365.
doi: 10.1016/j.matlet.2014.11.095
24 HU J, LI H, WU Q, et al Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. Chemical Engineering Journal, 2015, 263, 144- 150.
doi: 10.1016/j.cej.2014.11.007
25 SUN H, LIU S, LIU S, et al A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5in visible light photocatalytic/photochemical oxidation of methylene blue[J]. Applied Catalysis B: Environmental, 2014, 146 (3): 162- 168.
26 LIU I T, HON M H, TEOH L G, et al The preparation, characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures[J]. Ceramics International, 2014, 40 (3): 4019- 4024.
doi: 10.1016/j.ceramint.2013.08.053
27 龙梅, 丛野, 李轩科, 等 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29 (6): 1344- 1350.
27 LONG M, CONG Y, LI X K, et al Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Physico-Chimica Sinica, 2013, 29 (6): 1344- 1350.
28 FENG Y, FENG N N, WEI Y Z, et al An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light[J]. RSC Advances, 2014, 4 (16): 7933- 7943.
doi: 10.1039/c3ra46417b
29 LIU X, DU H, SUN X W, et al High-performance photoresponse of carbon-doped ZnO/reduced graphene oxide hybrid nanocomposites under UV and visible illumination[J]. RSC Advances, 2014, 4 (10): 5136- 5140.
doi: 10.1039/c3ra46864j
30 LI Y, ZHANG B P, ZHAO J X Enhanced photocatalytic performance of Au-Ag alloy modified ZnO nanocomposite films[J]. Journal of Alloys and Compounds, 2014, 586, 663- 668.
doi: 10.1016/j.jallcom.2013.10.085
31 WANG P, WANG J, WANG X, et al One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 132, 452- 459.
32 YANG N L, ZHAI J, WANG D, et al Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano, 2010, 4 (2): 887- 894.
doi: 10.1021/nn901660v
33 ZHANG Y, ZHANG N, TANG Z R, et al Graphene transforms wide band gap ZnS to a visible light photocatalyst: the new role of graphene as a macromolecular photosensitizer[J]. ACS Nano, 2012, 6 (11): 9777- 9789.
doi: 10.1021/nn304154s
[1] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[2] 李思骏, 邵兰兴, 冯丽, 程琥, 庄金亮. 二维Ce-MOFs纳米片的合成及可见光介导脱羧氧化性能[J]. 材料工程, 2022, 50(9): 89-96.
[3] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[4] 赵卫峰, 郝宁, 张改, 钱慧锦, 马爱洁, 周宏伟, 陈卫星. 苝四羧酸二酰亚胺修饰增强g-C3N4光催化性能[J]. 材料工程, 2022, 50(3): 98-106.
[5] 雷铭, 刘岳林, 谢水波, 葛玉杰, 刘迎九. ZnO/g-C3N4复合光催化剂的制备及光催化还原U (Ⅵ)[J]. 材料工程, 2022, 50(10): 157-164.
[6] 张建民, 刘宇琦, 李红玑. 活化凹凸棒石合成多级孔钛硅分子筛及其光催化性能研究[J]. 材料工程, 2022, 50(10): 165-171.
[7] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[8] 褚召冉, 陈功, 赵雪伶, 林东海, 陈诚. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
[9] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[10] 晏秘, 薛云, 申妍铭, 程琥, 庄金亮. 分级结构苯并噻二唑聚合物应用于可见光诱导硫醚选择性氧化[J]. 材料工程, 2021, 49(7): 64-70.
[11] 葛玉杰, 吴姣, 何志强, 王国华, 刘金香. g-C3N4基异质耦合光催化剂制备及在环境污染物去除领域的研究进展[J]. 材料工程, 2021, 49(4): 23-33.
[12] 向小倩, 廖小刚, 李纲, 胡学步, 田甜. 分级微/纳结构ZnO的制备及其光催化性能[J]. 材料工程, 2021, 49(4): 150-158.
[13] 谢桂香, 龚朋, 吕芬芬, 胡志彪. 原位构建P-N结复合材料及其可见光光催化性能[J]. 材料工程, 2021, 49(3): 107-114.
[14] 鲍艳, 高璐, 史秀娟, 贾顺田. 空心柱状CuS的制备及其降解染料性能[J]. 材料工程, 2021, 49(2): 136-142.
[15] 周锋, 任向红, 强洪夫, 曾逸智, 樊苗苗. GO增强g-C3N4气凝胶的可见光响应及其光催化降解偏二甲肼废水[J]. 材料工程, 2021, 49(11): 171-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn