1 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China 2 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China 3 School of Materials Science and Technology, Hubei University of Technology, Wuhan 430068, China 4 School of Science, Hubei University of Technology, Wuhan 430068, China
ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD), field emission electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO) as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm), and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.
SAFA S, SARRAF-MAMOORY R, AZIMIRAD R Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film[J]. Physica E: Low-dimensional Systems and Nanostruc-tures, 2014, 57, 155- 160.
doi: 10.1016/j.physe.2013.10.029
2
KUMAR K, CHITKARA M, SANDHU S I, et al Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route[J]. Journal of Alloys and Compounds, 2014, 588, 681- 689.
doi: 10.1016/j.jallcom.2013.11.127
3
LI D, HUANG J F, CAO L Y, et al Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties[J]. Ceramics International, 2014, 40 (2): 2647- 2653.
doi: 10.1016/j.ceramint.2013.10.061
4
PANT H R, PANT B, KIM H J, et al A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants[J]. Ceramics International, 2013, 39 (3): 5083- 5091.
5
HUANG K, LI Y H, LIN S, et al A facile route to reduced graphene oxide-zinc oxide nanorod composites with enhanced photocatalytic activity[J]. Powder Technology, 2014, 257 (5): 113- 119.
6
LIU Y, HU Y, ZHOU M, et al Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J]. Applied Catalysis B: Environmental, 2012, 125 (33): 425- 431.
7
LAI Y, MENG M, YU Y, et al One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation[J]. Applied Catalysis B: Environmental, 2010, 100 (3-4): 491- 501.
doi: 10.1016/j.apcatb.2010.08.027
8
LI P, WEI Z, WU T, et al Au-ZnO hybrid nanopyramids and their photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133 (15): 5660- 5663.
doi: 10.1021/ja111102u
9
KUNDU P, DESHPANDE P A, MADRAS G, et al Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J]. Journal of Materials Chemistry, 2011, 21 (12): 4209- 4216.
doi: 10.1039/c0jm03116j
10
SHI L, LIANG L, MA J, et al Improved photocatalytic performance over AgBr/ZnO under visible light[J]. Superlattices and Microstructures, 2013, 62, 128- 139.
doi: 10.1016/j.spmi.2013.07.013
11
ZHOU Q, ZHONG Y H, CHEN X, et al Mesoporous anatase TiO2/reduced graphene oxide nanocomposites: a simple template-free synthesis and their high photocatalytic performance[J]. Materials Research Bulletin, 2014, 51 (2): 244- 250.
12
WANG X W, ZHOU L, LI F ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue[J]. New Carbon Materials, 2013, 28 (6): 408- 413.
doi: 10.1016/S1872-5805(13)60090-6
13
HUANG Q, TIAN S, ZENG D, et al Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J]. ACS Catalysis, 2013, 3 (7): 1477- 1485.
doi: 10.1021/cs400080w
14
ZENG B, CHEN X, LUO Y, et al Graphene spheres loaded urchin-like CuxO (x=1 or 2) for use as a high performance photocatalyst[J]. Ceramics International, 2014, 40 (3): 5055- 5059.
doi: 10.1016/j.ceramint.2013.09.021
15
KAVERI S, THIRUGNANAM L, DUTTAB M, et al Thiourea assisted one-pot easy synthesis of CdS/rGO composite by the wet chemical method: structural, optical, and photocatalytic properties[J]. Ceramics International, 2013, 39 (8): 9207- 9214.
doi: 10.1016/j.ceramint.2013.05.025
16
LI X, XU X, XIA F, et al Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor[J]. Electrochimica Acta, 2014, 130 (4): 305- 313.
17
NAGARAJU G, EBELING G, GONCALVES R V, et al Controlled growth of TiO2 and TiO2-RGO composite nanoparticles inionic liquids for enhanced photocatalytic H2 generation[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378 (11): 213- 220.
18
LIU X, PAN L, ZHAO Q, et al UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)[J]. Biochemical Engineering Journal, 2012, 183 (4): 238- 243.
19
ZHANG L, DU L, CAI X, et al Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle-graphene hybrids[J]. Physica E: Low-dimensional Systems and Nanostructures, 2013, 47 (5): 279- 284.
20
DONG S, LI Y, SUN J, et al Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole[J]. Materials Chemistry and Physics, 2014, 145 (3): 357- 365.
doi: 10.1016/j.matchemphys.2014.02.024
BO X Q, LIU C B, HE Y, et al Fabrication and gas sensing properties of porous ZnO nanorods[J]. Journal of Materials Engineering, 2014, (8): 86- 89.
22
HUMMERS W S Jr, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339- 1339.
doi: 10.1021/ja01539a017
23
RUAN C, ZHANG L, QIN Y, et al Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light[J]. Materials Letters, 2015, 141, 362- 365.
doi: 10.1016/j.matlet.2014.11.095
24
HU J, LI H, WU Q, et al Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. Chemical Engineering Journal, 2015, 263, 144- 150.
doi: 10.1016/j.cej.2014.11.007
25
SUN H, LIU S, LIU S, et al A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5in visible light photocatalytic/photochemical oxidation of methylene blue[J]. Applied Catalysis B: Environmental, 2014, 146 (3): 162- 168.
26
LIU I T, HON M H, TEOH L G, et al The preparation, characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures[J]. Ceramics International, 2014, 40 (3): 4019- 4024.
doi: 10.1016/j.ceramint.2013.08.053
LONG M, CONG Y, LI X K, et al Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Physico-Chimica Sinica, 2013, 29 (6): 1344- 1350.
28
FENG Y, FENG N N, WEI Y Z, et al An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light[J]. RSC Advances, 2014, 4 (16): 7933- 7943.
doi: 10.1039/c3ra46417b
29
LIU X, DU H, SUN X W, et al High-performance photoresponse of carbon-doped ZnO/reduced graphene oxide hybrid nanocomposites under UV and visible illumination[J]. RSC Advances, 2014, 4 (10): 5136- 5140.
doi: 10.1039/c3ra46864j
30
LI Y, ZHANG B P, ZHAO J X Enhanced photocatalytic performance of Au-Ag alloy modified ZnO nanocomposite films[J]. Journal of Alloys and Compounds, 2014, 586, 663- 668.
doi: 10.1016/j.jallcom.2013.10.085
31
WANG P, WANG J, WANG X, et al One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 132, 452- 459.
32
YANG N L, ZHAI J, WANG D, et al Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. ACS Nano, 2010, 4 (2): 887- 894.
doi: 10.1021/nn901660v
33
ZHANG Y, ZHANG N, TANG Z R, et al Graphene transforms wide band gap ZnS to a visible light photocatalyst: the new role of graphene as a macromolecular photosensitizer[J]. ACS Nano, 2012, 6 (11): 9777- 9789.
doi: 10.1021/nn304154s