Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (12): 100-106    DOI: 10.11868/j.issn.1001-4381.2016.12.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
复合材料层板低速冲击后疲劳性能实验研究
梁小林, 许希武, 林智育
南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016
Fatigue Performance of Composite Laminates After Low-velocity Impact
LIANG Xiao-lin, XU Xi-wu, LIN Zhi-yu
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(8951 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对T300/5405复合材料层板进行低速冲击后的压-压疲劳实验,研究含不同冲击损伤层板的压缩性能与其在多级应力水平下的疲劳寿命与损伤扩展,并讨论冲击能量、应力水平、损伤扩展对层板疲劳寿命的影响。结果表明:冲击损伤明显降低层板的剩余强度;在低应水平下,冲击能量越大,含冲击损伤层板的疲劳寿命越小;疲劳实验中损伤经历平稳扩展和快速扩展两个阶段,其中平稳扩展阶段约占总体寿命的80%,快速扩展阶段约占总体寿命的20%,损伤扩展速率随着应力水平降低而减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁小林
许希武
林智育
关键词 复合材料层板压缩性能损伤扩展疲劳寿命    
Abstract:Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.
Key wordscomposite laminate    compression performance    damage propagation    fatigue life
收稿日期: 2014-08-30      出版日期: 2016-12-16
中图分类号:  TB330.1  
通讯作者: 许希武(1963-),男,教授,博士生导师,从事飞行器结构完整性评定技术和计算力学等领域的研究工作,联系地址:江苏省南京市御道街29号南京航空航天大学297信箱(210016),E-mail:xwxu@nuaa.edu.cn     E-mail: xwxu@nuaa.edu.cn
引用本文:   
梁小林, 许希武, 林智育. 复合材料层板低速冲击后疲劳性能实验研究[J]. 材料工程, 2016, 44(12): 100-106.
LIANG Xiao-lin, XU Xi-wu, LIN Zhi-yu. Fatigue Performance of Composite Laminates After Low-velocity Impact. Journal of Materials Engineering, 2016, 44(12): 100-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.12.016      或      http://jme.biam.ac.cn/CN/Y2016/V44/I12/100
[1] RAMKUMAR R L.Effect of low-velocity impact damage on the fatigue behavior of graphite/epoxy laminates[J].ASTM,1983,116-135.
[2] DIGBY D S,GRAHAM D.Fatigue testing of impact-damaged T300/914 carbon-fiber-reinforced plastic[J].Composites Science and Technology,1999,60(3):379-389.
[3] MITROVIC M,HAHN H T,CARMAN G P,et al.Effect of loading parameters on the fatigue behavior of impact damaged composite laminates[J].Composites Science and Technology,1999,59(14):2059-2078.
[4] MELIN L G,SCHLN J.Buckling behavior and delamination growth in impacted composite specimens under fatigue load:an experimental study[J].Composites Science and Technology,2001,61(13):1841-1852.
[5] MELIN L G,SCHLN J,NYMAN T.Fatigue testing and buckling characteristics of impacted composite specimens[J].International Journal of Fatigue,2002,24(2-4):263-272.
[6] 朱炜垚,许希武.含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究[J].复合材料学报,2012,29(5):171-178. ZHU W Y,XU X W.Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage[J].Acta Materiae Compositae Sinica,2012,29(5):171-178.
[7] TAI N H,YIP M C,LIN J L.Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites[J].Composites Science and Technology,1998,58(1):1-8.
[8] TAI N H,MA C C M,LIN J M,et al.Effects of thickness on the fatigue-behavior of quasi-isotropic carbon/epoxy composites before and after low energy impacts[J].Composites Science & Technology,1999,59(11):1753-1762.
[9] 毛天祥,李春秀.带圆孔玻璃/聚脂层板的疲劳损伤扩展[J].复合材料学报,1987,(4):61-66. MAO T X,LI C X.Damage accumulation in GRP laminates with central hole under fatigue[J].Acta Materiae Compositae Sinica,1987,(4):61-66.
[10] 矫桂琼.分层缺陷对复合材料层压板疲劳性能的影响[J].机械强度,1998,20(2):142-144. JIAO G Q.Influence of delamination flaw on fatigue behavior of composite laminates[J].Journal of Mechanical Strength,1988,20(2):142-144.
[11] HANSEN U.Damage Development in woven fabric composites during tension-tension fatigue[J].Journal of Composite Materials,1999,33(7):614-639.
[12] CHEN A S,ALMOND D P,HARRIS B.Impact damage growth in composites under fatigue conditions monitored by acoustography[J].International Journal of Fatigue,2002,24(2):257-261.
[13] WEN C,YAZDANI S.Anisotropic damage model for woven fabric composites during tension-tension fatigue[J].Composite Structures,2008,82(1):127-131.
[14] WISNOM M R,HALLETT S R.Scaling effects in notched composites[J].Journal of Composite Materials,2010,44(2):195-210.
[15] 鲁国富,刘勇,张呈林.含孔复合材料层合板的疲劳寿命研究[J].机械科学与技术,2010,29(5):684-689. LU G F,LIU Y,ZHANG C L.A Study of the fatigue life of laminates composites with a hole[J].Mechanical Science and Technology for Aerospace Engineering,2010,29(5):684-689.
[16] 赵时熙,PRINZ R,GOETTING H C.含孔复合材料层板疲劳损伤扩展的实验研究[J].航空学报,1988,9(1):75-83. ZHAO S X,PRINZ R,GOETTING H C.Experimental investigations on the damage growth of graphite/epoxy laminates with a hole under tension-compression fatigue[J].Acta Aeronautica et Astronautica Sinica,1988,9(1):75-83.
[1] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[2] 回丽, 刘思奇, 周松, 王磊, 马闯, 赵强. 载荷方向和焊缝余高对氩弧焊缝疲劳性能的影响[J]. 材料工程, 2018, 46(2): 122-127.
[3] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[4] 冷建成, 张辉, 周国强, 吴泽民. 再制造抽油杆疲劳寿命评估的磁记忆检测实验研究[J]. 材料工程, 2016, 44(9): 103-108.
[5] 刘晓丽, 鹿海军, 邢丽英. 发泡剂含量对双马来酰亚胺泡沫泡孔结构和性能的影响[J]. 材料工程, 2016, 44(5): 42-46.
[6] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[7] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[8] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[9] 黄文俊, 孙永波, 程小全, 聂宏. 复合材料层板单钉沉头螺栓连接结构拉伸性能[J]. 材料工程, 2013, 0(12): 8-12.
[10] 杨仕超, 王安强, 闫五柱, 元辛. 斜搭接连接件疲劳特性分析[J]. 材料工程, 2012, 0(9): 83-87.
[11] 王韶云, 李国禄, 王海斗, 刘金海, 徐滨士, 朴钟宇. 微缺陷对热喷涂涂层接触疲劳性能的影响[J]. 材料工程, 2012, 0(2): 72-76.
[12] 王敬丰, 魏怡芸, 吴夏, 潘复生, 汤爱涛, 丁培道. 铸态、挤压态和快速凝固态ZK60镁合金微观组织及压缩性能[J]. 材料工程, 2011, 0(8): 32-35,41.
[13] 胡燕慧, 钟群鹏, 张峥, 韩邦成. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011, 0(2): 26-30.
[14] 高宗战, 何新党, 姜志峰, 岳珠峰. 有机玻璃边缘连接结构疲劳寿命可靠性分析[J]. 材料工程, 2010, 0(5): 20-24.
[15] 花兴艳, 赵培仲, 朱金华, 王源升. 聚氨酯/环氧树脂互穿网络硬泡静态压缩塑性变形模式[J]. 材料工程, 2010, 0(4): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn