Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (12): 118-126    DOI: 10.11868/j.issn.1001-4381.2016.12.018
  综述 本期目录 | 过刊浏览 | 高级检索 |
润湿性可切换的表面
刘朋博, 王嘉骏(), 冯连芳, 顾雪萍
浙江大学 化学工程与生物工程学院, 杭州 310027
Surface with Switchable Wettability
Peng-bo LIU, Jia-jun WANG(), Lian-fang FENG, Xue-ping GU
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
全文: PDF(2175 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超疏水性和超亲水性是表面润湿性的两个极端,受表面的形貌和化学组成的共同作用。通过施加外界刺激可以改变表面形貌和/或表面化学组成,实现表面润湿性在超疏水性和超亲水性之间的切换。本文综述了润湿性可切换表面的最新研究进展。概述了以光照、温度、pH值、溶剂、电势等作为外界刺激以及表面反离子切换实现表面润湿性在超疏水和超亲水之间切换的方法。介绍了由于非对称的润湿性而导致液体定向传递的现象。展望了可控润湿性表面发展趋势,通过调控表面微米-纳米多级粗糙结构和化学组成,可实现在各种基材表面实现超疏水和超亲水之间的切换。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘朋博
王嘉骏
冯连芳
顾雪萍
关键词 超疏水性超亲水性可切换的润湿性定向传递    
Abstract

Superhydrophobicity and superhydrophilicity are extreme properties of solid surface governed by surface morphology and surface chemistry. Switching between superhydrophobicity and superhydrophilicity can be achieved by applying external stimuli and exchanging counterions due to the change in surface morphology and/or surface chemistry. This review mainly gives a concise overview of switchable wettability of surface. Through applying external stimuli such as light, temperature, pH value, solvent, electric potential and exchanging of counterions, the wettability of surface can switch between superhydrophobicity and superhydrophilicity. The material with asymmetric wettability exhibits some novel abilities such as directional liquid transport. Finally, the advances of surface with switchable wettability are prospected. By controlling the micro-nano structure and chemical composition, the switch between superhydrophobicity and superhydrophilicity can be realized on various surfaces.

Key wordssuperhydrophobicity    superhydrophilicity    switchable wettability    directional transport
收稿日期: 2014-12-05      出版日期: 2016-12-16
基金资助:国家自然科学基金资助项目(21276222);国家高技术研究发展计划(863计划)专项经费资助项目(2012AA040305);化学工程联合国家重点实验室开放课题资助项目(SKL-ChE-13D01)
通讯作者: 王嘉骏     E-mail: jiajunwang@zju.edu.cn
作者简介: 王嘉骏(1973-),男,副教授,博士,研究方向:聚合物材料及其数值模拟,联系地址:浙江省杭州市浙江大学化工系聚合物研究所(310027),E-mail:jiajunwang@zju.edu.cn
引用本文:   
刘朋博, 王嘉骏, 冯连芳, 顾雪萍. 润湿性可切换的表面[J]. 材料工程, 2016, 44(12): 118-126.
Peng-bo LIU, Jia-jun WANG, Lian-fang FENG, Xue-ping GU. Surface with Switchable Wettability. Journal of Materials Engineering, 2016, 44(12): 118-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.12.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I12/118
Fig.1  水滴在TiO2表面润湿性的切换[20]
(a)超疏水性与超亲水性间的切换;(b)多次可逆切换
Fig.2  具有TiO2纳米层的纸表面润湿性的切换[24]
Fig.3  偶氮苯化合物在紫外灯和可见光照射下在反式结构和顺式结构之间转换[26]
Fig.4  光驱动表面润湿性切换[29]
(a)接触角与表面沉积层数的关系(反式和顺式);(b)润湿性可逆切换
Fig.5  温度响应的润湿性切换[31]
(a)温度对表面水接触角的影响;(b)温度对氢键和聚异丙基丙烯酰胺分子构型的影响
Fig.6  纤维在空气及酸性碱性水中的不同润湿性[41]
Fig.7  自组装的薄膜表面水滴形貌[42]
(a)pH=6;(b)pH=12;(c)pH=6时乳胶粒子形貌;(d)pH=12时乳胶粒子形貌
1 SUN M, LUO C, XU L, et al Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21 (19): 8978- 8981.
doi: 10.1021/la050316q
2 HAN J T, LEE D H, RYU C Y, et al Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding[J]. Journal of the American Chemical Society, 2004, 126 (15): 4796- 4797.
doi: 10.1021/ja0499400
3 SHI F, WANG Z, ZHANG X Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders[J]. Advanced Materials, 2005, 17 (8): 1005- 1009.
doi: 10.1002/(ISSN)1521-4095
4 LAU K K S, BICO J, TEO K B K, et al Superhydrophobic carbon nanotube forests[J]. Nano Letters, 2003, 3 (12): 1701- 1705.
doi: 10.1021/nl034704t
5 MINKO S, MVLLER M, MOTORNOV M, et al Two-level structured self-adaptive surfaces with reversibly tunable properties[J]. Journal of the American Chemical Society, 2003, 125 (13): 3896- 3900.
doi: 10.1021/ja0279693
6 GENZER J Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290 (5499): 2130- 2133.
doi: 10.1126/science.290.5499.2130
7 ZHOU H, WANG H, NIU H, et al Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24 (18): 2409- 2412.
doi: 10.1002/adma.201200184
8 FENG L, ZHU D, LI S, et al Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14 (24): 1857- 1860.
doi: 10.1002/adma.200290020
9 连峰, 王增勇, 张会臣 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43 (1): 49- 53.
9 LIAN F, WANG Z Y, ZHANG H C Preparation of hydrophobic/ superhydrophobic warship aluminium alloy surface and its durability[J]. Journal of Materials Engineering, 2015, 43 (1): 49- 53.
10 DANIEL S, CHAUDHURY M K, CHEN J C Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291 (5504): 633- 636.
doi: 10.1126/science.291.5504.633
11 GIL E, HUDSON S Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science, 2004, 29 (12): 1173- 1222.
doi: 10.1016/j.progpolymsci.2004.08.003
12 SAMUEL J D, RUTHER P, FRERICHS H P, et al A simple route towards the reduction of surface conductivity in gas sensor devices[J]. Sensors and Actuators B: Chemical, 2005, 110 (2): 218- 224.
doi: 10.1016/j.snb.2005.01.032
13 WANG H, DING J, DAI L, et al Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20 (37): 7938- 7940.
doi: 10.1039/c0jm02364g
14 CHARCOSSET C A review of membrane processes and renewable energies for desalination[J]. Desalination, 2009, 245 (1-3): 214- 231.
doi: 10.1016/j.desal.2008.06.020
15 TEH S, LIN R, HUNG L, et al Droplet microfluidics[J]. Lab on a Chip, 2008, 8 (2): 198- 220.
doi: 10.1039/b715524g
16 施政余, 李梅, 赵燕, 等 润湿性可控智能表面的研究进展[J]. 材料研究学报, 2008, 22 (6): 561- 571.
16 SHI Z Y, LI M, ZHAO Y, et al Advance of smart surfaces with controllable wettability[J]. Chinese Journal of Materials Research, 2008, 22 (6): 561- 571.
17 XIA F, ZHU Y, FENG L, et al Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity[J]. Soft Matter, 2009, 5 (2): 275- 281.
doi: 10.1039/B803951H
18 XIN B, HAO J Reversibly switchable wettability[J]. Chemical Society Reviews, 2010, 39 (2): 769- 782.
doi: 10.1039/B913622C
19 WANG K H, FUJISHIMA A Light-induced amphiphilic surfaces[J]. Nature, 1997, 388 (6641): 431- 432.
doi: 10.1038/41233
20 FENG X, ZHAI J, JIANG L The fabrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angewandte Chemie International Edition, 2005, 44 (32): 5115- 5118.
doi: 10.1002/(ISSN)1521-3773
21 ZHANG X, JIN M, LIU Z, et al Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning[J]. Journal of Physical Chemistry C, 2007, 111 (39): 14521- 14529.
doi: 10.1021/jp0744432
22 FATEH R, DILLERT R, BAHNEMANN D Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate[J]. Langmuir, 2013, 29 (11): 3730- 3739.
doi: 10.1021/la400191x
23 LEE M W, AN S, JOSHI B, et al Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers[J]. ACS Applied Materials & Interfaces, 2013, 5 (4): 1232- 1239.
24 STEPIEN M, SAARINEN J J, TEISALA H, et al ToF-SIMS analysis of UV-switchable TiO2[J]. Langmuir, 2013, 29 (11): 3780- 3790.
doi: 10.1021/la304731m
25 LIM H S, KWAK D, LEE D Y, et al UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society, 2007, 129 (14): 4128- 4129.
doi: 10.1021/ja0692579
26 JIANG W, WANG G, HE Y, et al Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer[J]. Chemical Communications, 2005, (28): 3550- 3552.
doi: 10.1039/b504479k
27 SIEWIERSKI L M, BRITTAIN W J, PETRASH S, et al Photoresponsive monolayers containing in-chain azobenzene[J]. Langmuir, 1996, 12 (24): 5838- 5844.
doi: 10.1021/la960506o
28 FENG C L, ZHANG Y J, JIN J, et al Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in langmuir-blodgett films[J]. Langmuir, 2001, 17 (15): 4593- 4597.
doi: 10.1021/la010071r
29 LIM H S, HAN J T, KWAK D, et al Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern[J]. Journal of the American Chemical Society, 2006, 128 (45): 14458- 14459.
doi: 10.1021/ja0655901
30 YIM H, KENT M S, MENDEZ S, et al Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water[J]. Macromolecules, 2004, 37 (5): 1994- 1997.
doi: 10.1021/ma0354290
31 SUN T, WANG G, FENG L, et al Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43 (3): 357- 360.
doi: 10.1002/(ISSN)1521-3773
32 FU Q, RAMA RAO G V, BASAME S B, et al Reversible control of free energy and topography of nanostructured surfaces[J]. Journal of the American Chemical Society, 2004, 126 (29): 8904- 8905.
doi: 10.1021/ja047895q
33 JIANG C, WANG Q, WANG T Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Applied Surface Science, 2012, 258 (11): 4888- 4892.
doi: 10.1016/j.apsusc.2012.01.107
34 ÖZÇAM A E, ROSKOV K E, GENZER J, et al Responsive PET nano/microfibers via surface-initiated polymerization[J]. ACS Applied Materials & Interfaces, 2012, 4 (1): 59- 64.
35 MUTHIAH P, BOYLE T J, SIGMUND W Thermally induced, rapid wettability switching of electrospun blended polystyrene/poly(N-isopropylacrylamide)nanofiber mats[J]. Macromolecular Materials and Engineering, 2013, 298 (12): 1251- 1258.
doi: 10.1002/mame.v298.12
36 GU S, WANG Z, LI J, et al Switchable wettability of thermo-responsive biocompatible nanofibrous films created by electrospinning[J]. Macromolecular Materials and Engineering, 2010, 295 (1): 32- 36.
doi: 10.1002/mame.v295:1
37 LUTZ J, AKDEMIR Ö, HOTH A Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over?[J]. Journal of the American Chemical Society, 2006, 128 (40): 13046- 13047.
doi: 10.1021/ja065324n
38 KHONGTONG S, FERGUSON G S Temperature-actuated changes in wettability at elastomer/water interfaces[J]. Langmuir, 2004, 20 (23): 9992- 10000.
doi: 10.1021/la0497191
39 JIANG Y, WANG Z, YU X, et al Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces[J]. Langmuir, 2005, 21 (5): 1986- 1990.
doi: 10.1021/la047491b
40 WANG B, GUO Z pH-responsive bidirectional oil-water separation material[J]. Chemical Communications, 2013, 49 (82): 9416- 9423.
doi: 10.1039/c3cc45566a
41 WANG B, GUO Z, LIU W pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4 (28): 14684- 14690.
doi: 10.1039/c3ra48002j
42 WANG J, HU J, WEN Y, et al Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity[J]. Chemistry of Materials, 2006, 18 (21): 4984- 4986.
doi: 10.1021/cm061417s
43 SYNYTSKA A, STAMM M, DIEZ S, et al Simple and fast method for the fabrication of switchable bicomponent micropatterned polymer surfaces[J]. Langmuir, 2007, 23 (9): 5205- 5209.
doi: 10.1021/la063601y
44 KIM B Y, BRUENING M L pH-dependent growth and morphology of multilayer dendrimer/poly(acrylic acid) films[J]. Langmuir, 2003, 19 (1): 94- 99.
doi: 10.1021/la026353o
45 CONNAL L A, LI Q, QUINN J F, et al pH-responsive poly(acrylic acid) core cross-linked star polymers: morphology transitions in solution and multilayer thin films[J]. Macromolecules, 2008, 41 (7): 2620- 2626.
doi: 10.1021/ma7019557
46 ZHANG H, FU Y, WANG D, et al Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly(4-vinylpyridine) and micropore formation by post-base treatment[J]. Langmuir, 2003, 19 (20): 8497- 8502.
doi: 10.1021/la035036u
47 MINKO S, MVLLER M, MOTORNOV M, et al Two-level structured self-adaptive surfaces with reversibly tunable properties[J]. Journal of the American Chemical Society, 2003, 125 (13): 3896- 3900.
doi: 10.1021/ja0279693
48 JULTHONGPIPUT D, LIN Y, TENG J, et al Y-shaped polymer brushes: nanoscale switchable surfaces[J]. Langmuir, 2003, 19 (19): 7832- 7836.
doi: 10.1021/la035007j
49 JENNINGS G K, BRANTLEY E L Physicochemical properties of surface-initiated polymer films in the modification and processing of materials[J]. Advanced Materials, 2004, 16 (22): 1983- 1994.
doi: 10.1002/(ISSN)1521-4095
50 ZHOU Y, YI T, LI T, et al Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions[J]. Chemistry of Materials, 2006, 18 (13): 2974- 2981.
doi: 10.1021/cm052805h
51 HENG L, DONG Y, ZHAI J, et al Solvent fuming dual-responsive switching of both wettability and solid-state luminescence in silole film[J]. Langmuir, 2008, 24 (5): 2157- 2161.
doi: 10.1021/la702888v
52 CHOI I S, CHI Y S Surface reactions on demand: electrochemical control of SAM-based reactions[J]. Angewandte Chemie International Edition, 2006, 45 (30): 4894- 4897.
doi: 10.1002/(ISSN)1521-3773
53 XU L, CHEN W, MULCHANDANI A, et al Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie International Edition, 2005, 44 (37): 6009- 6012.
doi: 10.1002/(ISSN)1521-3773
54 QUINN A, SEDEV R, RALSTON J Influence of the electrical double layer in electrowetting[J]. The Journal of Physical Chemistry B, 2003, 107 (5): 1163- 1169.
doi: 10.1021/jp0216326
55 KRUPENKIN T N, TAYLOR J A, SCHNEIDER T M, et al From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces[J]. Langmuir, 2004, 20 (10): 3824- 3827.
doi: 10.1021/la036093q
56 ZHU L, XU J, XIU Y, et al Electrowetting of aligned carbon nanotube films[J]. The Journal of Physical Chemistry B, 2006, 110 (32): 15945- 15950.
doi: 10.1021/jp063265u
57 WANG L, LIN Y, PENG B, et al Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers[J]. Chemical Communications, 2008, (45): 5972- 5974.
doi: 10.1039/b813557f
58 ZHANG G, ZHANG X, LI M, et al A surface with superoleophilic-to-superoleophobic wettability gradient[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1729- 1733.
59 YANG J, ZHANG Z, MEN X, et al Counterion exchange to achieve reversibly switchable hydrophobicity and oleophobicity on fabrics[J]. Langmuir, 2011, 27 (12): 7357- 7360.
doi: 10.1021/la201117e
60 LIM H S, LEE S G, LEE D H, et al Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction[J]. Advanced Materials, 2008, 20 (23): 4438- 4441.
doi: 10.1002/adma.v20:23
61 JIANG C, WANG Q, WANG T Tunable wettability via counterion exchange of polyelectrolyte brushes grafted on cotton fabric[J]. New Journal of Chemistry, 2012, 36 (8): 1641- 1645.
doi: 10.1039/c2nj40246g
62 ZHENG Y, BAI H, HUANG Z, et al Directional water collection on wetted spider silk[J]. Nature, 2010, 463 (7281): 640- 643.
doi: 10.1038/nature08729
63 JU J, BAI H, ZHENG Y, et al A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3 (4): 1247- 1252.
64 BAI H, SUN R, JU J, et al Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7 (24): 3429- 3433.
doi: 10.1002/smll.v7.24
65 FENG S, HOU Y, CHEN Y, et al Water-assisted fabrication of porous bead-on-string fibers[J]. Journal of Materials Chemistry A, 2013, 1 (29): 8363- 8366.
doi: 10.1039/c3ta11617d
66 TIAN X, BAI H, ZHENG Y, et al Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Advanced Functional Materials, 2011, 21 (8): 1398- 1402.
doi: 10.1002/adfm.v21.8
67 KONG Y, LIU Y, XIN J H Fabrics with self-adaptive wettability controlled by "light-and-dark"[J]. Journal of Materials Chemistry, 2011, 21 (44): 17978- 17987.
doi: 10.1039/c1jm12516h
68 WU J, WANG N, WANG L, et al Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8 (22): 5996- 5999.
doi: 10.1039/c2sm25514f
69 SHI Y, LI Y, WU J, et al A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration[J]. Journal of Biomaterials Science, Polymer Edition, 2014, 25 (7): 713- 728.
doi: 10.1080/09205063.2014.897596
70 ZHOU H, WANG H, NIU H, et al Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3 (10): 2964- 2969.
[1] 华江龙, 江琦. 耐久可拉伸超疏水材料的构建及应用研究进展[J]. 材料工程, 2023, 51(1): 76-84.
[2] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[3] 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn