Superhydrophobicity and superhydrophilicity are extreme properties of solid surface governed by surface morphology and surface chemistry. Switching between superhydrophobicity and superhydrophilicity can be achieved by applying external stimuli and exchanging counterions due to the change in surface morphology and/or surface chemistry. This review mainly gives a concise overview of switchable wettability of surface. Through applying external stimuli such as light, temperature, pH value, solvent, electric potential and exchanging of counterions, the wettability of surface can switch between superhydrophobicity and superhydrophilicity. The material with asymmetric wettability exhibits some novel abilities such as directional liquid transport. Finally, the advances of surface with switchable wettability are prospected. By controlling the micro-nano structure and chemical composition, the switch between superhydrophobicity and superhydrophilicity can be realized on various surfaces.
SUN M, LUO C, XU L, et al Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21 (19): 8978- 8981.
doi: 10.1021/la050316q
2
HAN J T, LEE D H, RYU C Y, et al Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding[J]. Journal of the American Chemical Society, 2004, 126 (15): 4796- 4797.
doi: 10.1021/ja0499400
3
SHI F, WANG Z, ZHANG X Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders[J]. Advanced Materials, 2005, 17 (8): 1005- 1009.
doi: 10.1002/(ISSN)1521-4095
4
LAU K K S, BICO J, TEO K B K, et al Superhydrophobic carbon nanotube forests[J]. Nano Letters, 2003, 3 (12): 1701- 1705.
doi: 10.1021/nl034704t
5
MINKO S, MVLLER M, MOTORNOV M, et al Two-level structured self-adaptive surfaces with reversibly tunable properties[J]. Journal of the American Chemical Society, 2003, 125 (13): 3896- 3900.
doi: 10.1021/ja0279693
ZHOU H, WANG H, NIU H, et al Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24 (18): 2409- 2412.
doi: 10.1002/adma.201200184
8
FENG L, ZHU D, LI S, et al Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14 (24): 1857- 1860.
doi: 10.1002/adma.200290020
LIAN F, WANG Z Y, ZHANG H C Preparation of hydrophobic/ superhydrophobic warship aluminium alloy surface and its durability[J]. Journal of Materials Engineering, 2015, 43 (1): 49- 53.
10
DANIEL S, CHAUDHURY M K, CHEN J C Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291 (5504): 633- 636.
doi: 10.1126/science.291.5504.633
11
GIL E, HUDSON S Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science, 2004, 29 (12): 1173- 1222.
doi: 10.1016/j.progpolymsci.2004.08.003
12
SAMUEL J D, RUTHER P, FRERICHS H P, et al A simple route towards the reduction of surface conductivity in gas sensor devices[J]. Sensors and Actuators B: Chemical, 2005, 110 (2): 218- 224.
doi: 10.1016/j.snb.2005.01.032
13
WANG H, DING J, DAI L, et al Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20 (37): 7938- 7940.
doi: 10.1039/c0jm02364g
14
CHARCOSSET C A review of membrane processes and renewable energies for desalination[J]. Desalination, 2009, 245 (1-3): 214- 231.
doi: 10.1016/j.desal.2008.06.020
15
TEH S, LIN R, HUNG L, et al Droplet microfluidics[J]. Lab on a Chip, 2008, 8 (2): 198- 220.
doi: 10.1039/b715524g
SHI Z Y, LI M, ZHAO Y, et al Advance of smart surfaces with controllable wettability[J]. Chinese Journal of Materials Research, 2008, 22 (6): 561- 571.
17
XIA F, ZHU Y, FENG L, et al Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity[J]. Soft Matter, 2009, 5 (2): 275- 281.
doi: 10.1039/B803951H
18
XIN B, HAO J Reversibly switchable wettability[J]. Chemical Society Reviews, 2010, 39 (2): 769- 782.
doi: 10.1039/B913622C
19
WANG K H, FUJISHIMA A Light-induced amphiphilic surfaces[J]. Nature, 1997, 388 (6641): 431- 432.
doi: 10.1038/41233
20
FENG X, ZHAI J, JIANG L The fabrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angewandte Chemie International Edition, 2005, 44 (32): 5115- 5118.
doi: 10.1002/(ISSN)1521-3773
21
ZHANG X, JIN M, LIU Z, et al Superhydrophobic TiO2 surfaces: preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning[J]. Journal of Physical Chemistry C, 2007, 111 (39): 14521- 14529.
doi: 10.1021/jp0744432
22
FATEH R, DILLERT R, BAHNEMANN D Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate[J]. Langmuir, 2013, 29 (11): 3730- 3739.
doi: 10.1021/la400191x
23
LEE M W, AN S, JOSHI B, et al Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers[J]. ACS Applied Materials & Interfaces, 2013, 5 (4): 1232- 1239.
24
STEPIEN M, SAARINEN J J, TEISALA H, et al ToF-SIMS analysis of UV-switchable TiO2[J]. Langmuir, 2013, 29 (11): 3780- 3790.
doi: 10.1021/la304731m
25
LIM H S, KWAK D, LEE D Y, et al UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society, 2007, 129 (14): 4128- 4129.
doi: 10.1021/ja0692579
26
JIANG W, WANG G, HE Y, et al Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer[J]. Chemical Communications, 2005, (28): 3550- 3552.
doi: 10.1039/b504479k
27
SIEWIERSKI L M, BRITTAIN W J, PETRASH S, et al Photoresponsive monolayers containing in-chain azobenzene[J]. Langmuir, 1996, 12 (24): 5838- 5844.
doi: 10.1021/la960506o
28
FENG C L, ZHANG Y J, JIN J, et al Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in langmuir-blodgett films[J]. Langmuir, 2001, 17 (15): 4593- 4597.
doi: 10.1021/la010071r
29
LIM H S, HAN J T, KWAK D, et al Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern[J]. Journal of the American Chemical Society, 2006, 128 (45): 14458- 14459.
doi: 10.1021/ja0655901
30
YIM H, KENT M S, MENDEZ S, et al Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water[J]. Macromolecules, 2004, 37 (5): 1994- 1997.
doi: 10.1021/ma0354290
31
SUN T, WANG G, FENG L, et al Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 2004, 43 (3): 357- 360.
doi: 10.1002/(ISSN)1521-3773
32
FU Q, RAMA RAO G V, BASAME S B, et al Reversible control of free energy and topography of nanostructured surfaces[J]. Journal of the American Chemical Society, 2004, 126 (29): 8904- 8905.
doi: 10.1021/ja047895q
33
JIANG C, WANG Q, WANG T Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Applied Surface Science, 2012, 258 (11): 4888- 4892.
doi: 10.1016/j.apsusc.2012.01.107
34
ÖZÇAM A E, ROSKOV K E, GENZER J, et al Responsive PET nano/microfibers via surface-initiated polymerization[J]. ACS Applied Materials & Interfaces, 2012, 4 (1): 59- 64.
35
MUTHIAH P, BOYLE T J, SIGMUND W Thermally induced, rapid wettability switching of electrospun blended polystyrene/poly(N-isopropylacrylamide)nanofiber mats[J]. Macromolecular Materials and Engineering, 2013, 298 (12): 1251- 1258.
doi: 10.1002/mame.v298.12
36
GU S, WANG Z, LI J, et al Switchable wettability of thermo-responsive biocompatible nanofibrous films created by electrospinning[J]. Macromolecular Materials and Engineering, 2010, 295 (1): 32- 36.
doi: 10.1002/mame.v295:1
37
LUTZ J, AKDEMIR Ö, HOTH A Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over?[J]. Journal of the American Chemical Society, 2006, 128 (40): 13046- 13047.
doi: 10.1021/ja065324n
38
KHONGTONG S, FERGUSON G S Temperature-actuated changes in wettability at elastomer/water interfaces[J]. Langmuir, 2004, 20 (23): 9992- 10000.
doi: 10.1021/la0497191
39
JIANG Y, WANG Z, YU X, et al Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces[J]. Langmuir, 2005, 21 (5): 1986- 1990.
doi: 10.1021/la047491b
40
WANG B, GUO Z pH-responsive bidirectional oil-water separation material[J]. Chemical Communications, 2013, 49 (82): 9416- 9423.
doi: 10.1039/c3cc45566a
41
WANG B, GUO Z, LIU W pH-responsive smart fabrics with controllable wettability in different surroundings[J]. RSC Advances, 2014, 4 (28): 14684- 14690.
doi: 10.1039/c3ra48002j
42
WANG J, HU J, WEN Y, et al Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity[J]. Chemistry of Materials, 2006, 18 (21): 4984- 4986.
doi: 10.1021/cm061417s
43
SYNYTSKA A, STAMM M, DIEZ S, et al Simple and fast method for the fabrication of switchable bicomponent micropatterned polymer surfaces[J]. Langmuir, 2007, 23 (9): 5205- 5209.
doi: 10.1021/la063601y
44
KIM B Y, BRUENING M L pH-dependent growth and morphology of multilayer dendrimer/poly(acrylic acid) films[J]. Langmuir, 2003, 19 (1): 94- 99.
doi: 10.1021/la026353o
45
CONNAL L A, LI Q, QUINN J F, et al pH-responsive poly(acrylic acid) core cross-linked star polymers: morphology transitions in solution and multilayer thin films[J]. Macromolecules, 2008, 41 (7): 2620- 2626.
doi: 10.1021/ma7019557
46
ZHANG H, FU Y, WANG D, et al Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly(4-vinylpyridine) and micropore formation by post-base treatment[J]. Langmuir, 2003, 19 (20): 8497- 8502.
doi: 10.1021/la035036u
47
MINKO S, MVLLER M, MOTORNOV M, et al Two-level structured self-adaptive surfaces with reversibly tunable properties[J]. Journal of the American Chemical Society, 2003, 125 (13): 3896- 3900.
doi: 10.1021/ja0279693
48
JULTHONGPIPUT D, LIN Y, TENG J, et al Y-shaped polymer brushes: nanoscale switchable surfaces[J]. Langmuir, 2003, 19 (19): 7832- 7836.
doi: 10.1021/la035007j
49
JENNINGS G K, BRANTLEY E L Physicochemical properties of surface-initiated polymer films in the modification and processing of materials[J]. Advanced Materials, 2004, 16 (22): 1983- 1994.
doi: 10.1002/(ISSN)1521-4095
50
ZHOU Y, YI T, LI T, et al Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions[J]. Chemistry of Materials, 2006, 18 (13): 2974- 2981.
doi: 10.1021/cm052805h
51
HENG L, DONG Y, ZHAI J, et al Solvent fuming dual-responsive switching of both wettability and solid-state luminescence in silole film[J]. Langmuir, 2008, 24 (5): 2157- 2161.
doi: 10.1021/la702888v
52
CHOI I S, CHI Y S Surface reactions on demand: electrochemical control of SAM-based reactions[J]. Angewandte Chemie International Edition, 2006, 45 (30): 4894- 4897.
doi: 10.1002/(ISSN)1521-3773
53
XU L, CHEN W, MULCHANDANI A, et al Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie International Edition, 2005, 44 (37): 6009- 6012.
doi: 10.1002/(ISSN)1521-3773
54
QUINN A, SEDEV R, RALSTON J Influence of the electrical double layer in electrowetting[J]. The Journal of Physical Chemistry B, 2003, 107 (5): 1163- 1169.
doi: 10.1021/jp0216326
55
KRUPENKIN T N, TAYLOR J A, SCHNEIDER T M, et al From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces[J]. Langmuir, 2004, 20 (10): 3824- 3827.
doi: 10.1021/la036093q
56
ZHU L, XU J, XIU Y, et al Electrowetting of aligned carbon nanotube films[J]. The Journal of Physical Chemistry B, 2006, 110 (32): 15945- 15950.
doi: 10.1021/jp063265u
57
WANG L, LIN Y, PENG B, et al Tunable wettability by counterion exchange at the surface of electrostatic self-assembled multilayers[J]. Chemical Communications, 2008, (45): 5972- 5974.
doi: 10.1039/b813557f
58
ZHANG G, ZHANG X, LI M, et al A surface with superoleophilic-to-superoleophobic wettability gradient[J]. ACS Applied Materials & Interfaces, 2014, 6 (3): 1729- 1733.
59
YANG J, ZHANG Z, MEN X, et al Counterion exchange to achieve reversibly switchable hydrophobicity and oleophobicity on fabrics[J]. Langmuir, 2011, 27 (12): 7357- 7360.
doi: 10.1021/la201117e
60
LIM H S, LEE S G, LEE D H, et al Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction[J]. Advanced Materials, 2008, 20 (23): 4438- 4441.
doi: 10.1002/adma.v20:23
61
JIANG C, WANG Q, WANG T Tunable wettability via counterion exchange of polyelectrolyte brushes grafted on cotton fabric[J]. New Journal of Chemistry, 2012, 36 (8): 1641- 1645.
doi: 10.1039/c2nj40246g
62
ZHENG Y, BAI H, HUANG Z, et al Directional water collection on wetted spider silk[J]. Nature, 2010, 463 (7281): 640- 643.
doi: 10.1038/nature08729
63
JU J, BAI H, ZHENG Y, et al A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3 (4): 1247- 1252.
64
BAI H, SUN R, JU J, et al Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7 (24): 3429- 3433.
doi: 10.1002/smll.v7.24
65
FENG S, HOU Y, CHEN Y, et al Water-assisted fabrication of porous bead-on-string fibers[J]. Journal of Materials Chemistry A, 2013, 1 (29): 8363- 8366.
doi: 10.1039/c3ta11617d
66
TIAN X, BAI H, ZHENG Y, et al Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Advanced Functional Materials, 2011, 21 (8): 1398- 1402.
doi: 10.1002/adfm.v21.8
67
KONG Y, LIU Y, XIN J H Fabrics with self-adaptive wettability controlled by "light-and-dark"[J]. Journal of Materials Chemistry, 2011, 21 (44): 17978- 17987.
doi: 10.1039/c1jm12516h
68
WU J, WANG N, WANG L, et al Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8 (22): 5996- 5999.
doi: 10.1039/c2sm25514f
69
SHI Y, LI Y, WU J, et al A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration[J]. Journal of Biomaterials Science, Polymer Edition, 2014, 25 (7): 713- 728.
doi: 10.1080/09205063.2014.897596
70
ZHOU H, WANG H, NIU H, et al Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3 (10): 2964- 2969.