Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 136-143    DOI: 10.11868/j.issn.1001-4381.2017.000063
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响
屈盛官1, 杨章选1, 赖福强1, 和锐亮1, 付志强2, 李小强1
1. 华南理工大学 国家金属材料近净成形工程技术研究中心, 广州 510640;
2. 中国地质大学(北京) 工程技术学院, 北京 100083
Effect of Copper Infiltration on Fretting Wear Properties of Powder Metallurgy Iron Based Valve Seat Material
QU Sheng-guan1, YANG Zhang-xuan1, LAI Fu-qiang1, HE Rui-liang1, FU Zhi-qiang2, LI Xiao-qiang1
1. National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China;
2. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China
全文: PDF(5102 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用压制-烧结-熔渗工艺,制备一种高性能铁基粉末冶金气门座圈材料,在SRV Ⅳ摩擦磨损试验机上对比研究不同渗铜量下材料的微动磨损性能。结果表明:在一定范围内随着渗铜量的增加,试样密度、硬度及压溃强度显著提高,摩擦因数与磨损体积降低,磨损机理发生不同程度的变化。未渗铜或渗铜量低时,试样磨损机理主要表现为磨粒磨损及疲劳剥落;渗铜量为10%(质量分数,下同)的试样磨损机理为轻微磨粒磨损和疲劳剥落;渗铜量为15%的试样表现出最优抗微动性能,仅有轻微黏着磨损;当渗铜量达20%时,试样力学性能下降,磨损体积增大,磨损机理转变为以黏着磨损为主。渗铜后的试样抗微动磨损性能更优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
屈盛官
杨章选
赖福强
和锐亮
付志强
李小强
关键词 粉末冶金气门座圈渗铜微动磨损磨损机理    
Abstract:A high quality iron-based P/M valve seat material was prepared by pressing, sintering, and copper infiltration. Fretting wear experiments were carried out by SRV Ⅳ tester to investigate the effect of the amount of infiltration on fretting wear properties of valve seat material. The results indicate that within certain range, with the increase of the amount of infiltration, higher density, hardness and crushing strength of the material are obtained, the friction coefficient and wear volume are reduced as well, and the wear mechanism changes in different degrees. The wear mechanisms of the specimens infiltrated with low amount of copper or without infiltration are mainly abrasive wear and fatigue spalling. When infiltrated with 10%Cu(mass fraction, the same below), the specimens are worn in the form of slight abrasive and fatigue spalling. The specimens infiltrated with 15%Cu show the best fretting wear resistance with very slight adhesive wear. As the infiltration amount reaches 20%, the mechanical properties of the specimens decline, the wear volume increases simultaneously, and adhesive wear is the main wear mechanism. The copper infiltrated specimens show better wear resistance than the substrate.
Key wordspowder metallurgy    valve seat    copper infiltration    fretting wear    wear mechanism
收稿日期: 2017-01-13      出版日期: 2018-07-20
中图分类号:  TF125  
通讯作者: 屈盛官(1966-),男,教授,博士,从事高性能金属材料的制备、精密成形以及机械零部件的摩擦磨损方面的研究工作,E-mail:13430275074@163.com     E-mail: 13430275074@163.com
引用本文:   
屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
QU Sheng-guan, YANG Zhang-xuan, LAI Fu-qiang, HE Rui-liang, FU Zhi-qiang, LI Xiao-qiang. Effect of Copper Infiltration on Fretting Wear Properties of Powder Metallurgy Iron Based Valve Seat Material. Journal of Materials Engineering, 2018, 46(7): 136-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000063      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/136
[1] CHUN K J,KIM J H,HONG J S. A study of exhaust valve and seat insert wear depending on cycle numbers[J]. Wear,2007, 263:1147-1157.
[2] 郭海涛,卓斌,彭健,等. 气门-气门座的摩擦学设计研究[J].内燃机学报,2011,19(3):258-262. GUO H T,ZHUO B,PENG J,et al. Study on valve-valve seat tribology designing[J]. Transactions of CSICE,2011,19(3):258-262.
[3] RAMALHO A,KAPSA P,BOUVARD G. Effect of temperatures up to 400℃ on the impact-sliding of valve-seat contacts[J]. Wear,2009,267:777-780.
[4] MASCARENHAS L A B,GOMES O D J,PORTELA T A,et al. Reducing the development life cycle of automotive valves and seat valves using a new workbench for high temperature wear testing[J]. Procedia CIRP,2015,29:833-838.
[5] 赵运才,李颂文,刘竞生. 发动机气门-门座磨损失效机理实验研究[J].摩擦学学报,2000,20(5):386-388. ZHAO Y C,LI S W,LIU J S. Experimental study on wear failure of gas-valve/valve-seat in engine[J]. Tribology,2000,20(5):386-388.
[6] FORSBERG P,HOLLMAN P,JACOBSON S. Wear mechanism study of exhaust valve system in modern heavy duty combustion engines[J]. Wear,2011,271:2477-2484.
[7] KESAVAN D,DONE V,SRIDHAR M R,et al. High temperature fretting wear prediction of exhaust valve material[J]. Tribology International,2016,100:280-286.
[8] WANG Y S,NARSIMHAN S,LARSON J M,et al. The effect of operating conditions on heavy duty engine valve seat wear[J]. Wear,1996,201:15-25.
[9] 屈盛官,王光宏,李文龙,等. 高性能渗氮钢微动磨损性能研究[J].摩擦学学报,2012,32(5):486-492. QU S G,WANG G H,LI W L,et al. Fretting wear of a high-performance plasma nitrided steel[J]. Tribology,2012,32(5):486-492.
[10] LIMA M M,BEHNAM M,YOUSEFLI S. Higher quality, better mechanical properties of PM valve seat inserts:by identifying key parameters in copper infiltration process[J]. Metal Powder Report,2016,71(6):465-468.
[11] CAMPOS M,TORRALBA J M,MENAPACE C,et al. Effect of copper infiltration on fracture mode in sintered steels[J]. Powder Metallurgy,2008,51(2):176-181.
[12] LOWHAPANDU P,LEWANDOWSKI J J. Fatigue and fracture of porous steels and Cu-infiltrated porous steels[J]. Metallurgical and Materials Transactions A,1999,30:325-334.
[13] 郑朝旭,林炎成,黄立仁. 渗铜处理对烧结硬化合金钢齿轮特性的影响[J].粉末冶金材料科学与工程,2008,13(1):50-57. ZHENG C X,LIN Y C,HUANG L R. Effect of copper infiltration on properties of sintering hardened alloy steel gears[J]. Materials Science and Engineering of Powder Metallurgy,2008,13(1):50-57.
[14] DYACHKOVA L N,FELDSHTEIN E E. Microstructures, strength characteristics and wear behavior of the Fe-based P/M composites after sintering or infiltration with Cu-Sn alloy[J]. Materials Science & Technology,2015,31:1226-1231.
[15] WONG W D,TELLEZ L,CHAVEZ J F,et al. Effect of copper on the mechanical properties of alloys formed by powder metallurgy[J]. Materials & Design,2014,58:12-18.
[16] ABDOOS H,KHORSAND H,SHAHANI A R. Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure[J]. Materials & Design,2009,30:1026-1031.
[17] 周珍妮,侯廷平,张国宏,等. 强磁场条件下中碳低合金钢中碳化物的析出[J].材料工程,2009(7):5-8. ZHOU Z N,HOU T P,ZHANG G H,et al. Carbide precipitation in a medium carbon low alloy steel under a high magnetic field[J]. Journal of Materials Engineering,2009(7):5-8.
[18] 姚萍屏,熊翔,黄伯云,等. 铜含量对铁基粉末冶金航空刹车材料摩擦磨损性能的影响[J].粉末冶金材料科学与工程,2000,5(3):205-209. YAO P P,XIONG X,HUANG B Y,et al. Effect of copper content on friction and wear properties of powder metallurgy iron based brake material for airplane[J]. Materials Science and Engineering of Powder Metallurgy,2000,5(3):205-209.
[19] 黄平. 摩擦学教程[M]. 北京:高等教育出版社,2008:64-68.
[20] YU L H,ZHAO H J,JU H B,et al. Influence of Cu content on the structure, mechanical and tribological properties of W2N-Cu films[J]. Thin Solid Films,2017,624:144-151.
[21] 罗林,刘谦,邱骥. 7A52铝合金微动磨损行为研究[J].材料工程,2009(4):45-48. LUO L,LIU Q,QIU J. Fretting wear behavior of 7A52 aluminum alloy[J]. Journal of Materials Engineering,2009(4):45-48.
[22] 阎逢元,周惠娣,张泽抚. 球盘微动摩擦件磨损体积的测量和计算[J].摩擦学学报,1995,15(2):145-151. YAN F Y,ZHOU H D,ZHANG Z F. The measurement and calculation of the wear volume of the pairs for fretting test[J]. Tribology,1995,15(2):145-151.
[23] 刘芳,周科朝,李志友. 熔渗量对颗粒增强的高性能铁基耐磨材料性能影响的研究[J].粉末冶金技术,2006,24(2):102-109. LIU F,ZHOU K C,LI Z Y. Effect of copper infiltration on the properties of Co-Cr-Mo-Si particle reinforced iron-based P/M materials[J]. Powder Metallurgy Technology,2006,24(2):102-109.
[24] 甄文柱,梁波. 等离子喷涂MoS2/Cu基复合涂层真空摩擦磨损性能[J].材料工程,2013(8):16-22. ZHEN W Z,LIANG B. Tribological behavior of plasma sprayed MoS2/Cu composite coating under vacuum atmosphere[J]. Journal of Materials Engineering,2013(8):16-22.
[1] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[2] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[3] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[4] 张斌, 陈岁元, 梁京, 刘常升, 崔彤, 王玫. 短应力线轧机激光再制造现状及发展趋势[J]. 材料工程, 2019, 47(11): 43-52.
[5] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[6] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[7] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[8] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[9] 伍灿, 沈火明, 邓莎莎, 刘娟, 彭金方. 5083铝合金扭动微动磨损实验研究[J]. 材料工程, 2016, 44(4): 71-75.
[10] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[11] 樊浩, 邢丽, 叶寅, 柯黎明, 傅徐荣. 旋转摩擦挤压制备MWCNTs/Al复合材料的组织及磨损性能[J]. 材料工程, 2016, 44(10): 47-53.
[12] 李奇, 王宪成, 蔡志海, 底月兰, 何星. null[J]. 材料工程, 2014, 0(6): 56-61.
[13] 左孔成, 蔡振兵, 宋川, 彭金方, 莫继良, 沈火明, 朱旻昊. 纤维取向对炭纤维织物复合材料扭动微动摩擦学性能的影响[J]. 材料工程, 2014, 0(4): 79-84.
[14] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[15] 顾和根, 蔡振兵, 岳文, 彭金方, 朱旻昊. 车轴钢表面渗氮/渗硫复合层的扭动微动磨损研究[J]. 材料工程, 2013, 0(7): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn