Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 106-112    DOI: 10.11868/j.issn.1001-4381.2017.000136
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响
刘政军1, 贾华1,2, 李萌2
1. 沈阳工业大学 材料科学与工程学院, 沈阳 110870;
2. 大连海洋大学应用技术学院, 辽宁 大连 116300
Effect of Self-shielded Flux Cored Wire Surfacing and In-situ Synthesis TiB2-TiC Particles on Microstructure and Properties of Surfacing Alloy
LIU Zheng-jun1, JIA Hua1,2, LI Meng2
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. Applied Technology College of Dalian Ocean University, Dalian 116300, Liaoning, China
全文: PDF(5158 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用自制的自保护药芯焊丝在Q235钢表面进行明弧堆焊实验,调整药芯焊丝中钛的添加量制备多组Fe-Cr-C-B-Ti合金。通过硬度和磨损实验得出堆焊合金力学性能的变化规律,借助X射线衍射仪(XRD)和扫描电镜(SEM)对堆焊合金的物相组成和显微组织进行观测分析。结果表明:随着钛添加量的增加,堆焊层中有TiC和TiB2硬质相颗粒生成,并且TiC优先于TiB2产生。大量弥散分布的TiC和TiB2在磨损过程中能起到抗磨质点和阻碍位错运动的作用,能够显著提高堆焊合金的耐磨性。当堆焊合金中钛的质量分数从0.15%增加到1.43%时,堆焊层的硬度从56.5HRC增加到66HRC,而磨损失重量从0.5772g减少到0.0487g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘政军
贾华
李萌
关键词 药芯焊丝堆焊合金组织性能原位合成硬质相    
Abstract:The self-shielded flux cored wire was used to test the surface of Q235 steel, and the Fe-Cr-C-B-Ti alloy was prepared by adjusting the content of Ti in the flux cored wire.The change rule of mechanical properties of surfacing alloy was obtained through hardness and wear test. The phase composition and microstructure of the alloy were investigated by X ray diffraction (XRD) and scanning electron microscopy (SEM).The results indicate that with the increase of Ti content, TiC and TiB2 hard phase particles are formed in the surfacing layer, and TiC is preceded by TiB2 production.A large number of dispersed TiC and TiB2 can play an important role in the wear process and wear resistance of the deposited metal. The hardness of the surfacing layer is increased from 56.5HRC to 66HRC, and the wear loss weight is decreased from 0.5772g to 0.0487g when the mass fraction of Ti in the surfacing alloy is increased from 0.15% to 1.43%.
Key wordsflux cored wire    surfacing alloy    microstructure and property    in-situ synthesis    hard phase
收稿日期: 2017-02-09      出版日期: 2018-07-20
中图分类号:  TG455  
通讯作者: 贾华(1983-),女,讲师,博士研究生,主要从事焊接冶金、特种焊接材料及表面强化方向的研究,联系地址:辽宁省大连瓦房店市东长春路二段12号大连海洋大学应用技术学院(116300),E-mail:jiahua110023@126.com     E-mail: jiahua110023@126.com
引用本文:   
刘政军, 贾华, 李萌. 自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响[J]. 材料工程, 2018, 46(7): 106-112.
LIU Zheng-jun, JIA Hua, LI Meng. Effect of Self-shielded Flux Cored Wire Surfacing and In-situ Synthesis TiB2-TiC Particles on Microstructure and Properties of Surfacing Alloy. Journal of Materials Engineering, 2018, 46(7): 106-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000136      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/106
[1] 任艳艳,张国赏,魏世忠,等. 我国堆焊技术的发展及展望[J]. 焊接技术,2012,41(6):1-4. REN Y Y, ZHANG G S, WEI S Z, et al. Development and prospect of surfacing technology in China[J]. Welding Technology, 2012,41(6):1-4.
[2] WANG X H, HAN F, QU S Y, et al. Microstructure of the Fe-based hardfacing layers reinforced by TiC-VC-Mo2C particles[J]. Surface and Coatings Technology,2008,202(8):1502-1509.
[3] 栗卓新,宋绍朋,史传伟. 自保护药芯焊丝的技术经济特点及工程应用前景[J]. 电焊机,2011,41(2):16-21,31. LI Z X, SONG S P, SHI C W. Technical and economical characteristics and prospect of engineering application of self-shielded flux-cored wire[J]. Electric Welding Machine,2011,41(2):16-21,31.
[4] JI H K, KANG H K, SEUNG D N, et al. The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys[J]. Wear,2009,267(9/10):1415-1419.
[5] BUCHELY M F, GUTIERREZ J C, LEON L M, et al. The effect of microstructure on abrasive wear of hardfacing alloys[J]. Wear,2005,259(1):52-61.
[6] WANG Z H, WANG Q B, CUI L. Influence of cooling rate and composition on orientation of primary carbides of Fe-Cr-C hardfacing alloys[J]. Science and Technology of Welding and Joining, 2013,13(7):656-662.
[7] 王智慧,万国力,贺定勇,等. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程,2014(9):57-62. WANG Z H, WAN G L, HE D Y, et al. Microstructures and wear resistance of Fe-Cr-B-C hardfacing alloys[J]. Journal of Materials Engineering,2014(9):57-62.
[8] BERNS H, FISCHER A. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and B[J]. Metallography, 1987, 20(4):401-429.
[9] 马世榜,夏振伟,徐杨,等. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程,2017,45(6):24-30. MA S B, XIA Z W, XU Y, et al. Microstructure and abrasion resistance of in-situ TiC particles reinforced Ni-based composite coatings by laser cladding[J]. Journal of Materials Engineering, 2017,45(6):24-30.
[10] 周芳,朱涛,何良华. 激光熔覆TiC-TiB2原位合成复合涂层[J]. 中国表面工程,2013,26(6):29-34. ZHOU F, ZHU T, HE L H. In-situ synthesized TiC-TiB2 composite coatings prepared by laser cladding[J]. China Surface Engineering,2013,26(6):29-34.
[11] WANG X H, PAN X N, DU B S, et al. Production of in-situ TiB2+TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding[J]. Transactions of Nonferrous Metals Society of China,2013,23(6):1689-1693.
[12] 孟君晟,吉泽升. 氩弧熔敷原位合成TiC-TiB2/Ti基复合涂层组织及性能分析[J].焊接学报,2013,34(9):67-70. MENG J S, JI Z S. Microstructure and Properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. Transactions of the China Welding Institution,2013,34(9):67-70.
[13] 尉法兵,刘海云,孟庆森,等. TiB2强化高硬度高耐磨堆焊自保护药芯焊丝堆焊层性能分析[J].焊接学报,2013,34(3):97-101. YU F B, LIU H Y, MENG Q S, et al. Performance of self-shielded flux-cored wire hardfacing layer with high hardness and abrasion resistance reinforced with TiB2[J]. Transactions of the China Welding Institution,2013,34(3):97-101.
[14] 梁英教,车荫昌. 无机物热力学数据手册[M]. 沈阳:东北大学出版社,1993:475-476. LIANG Y J, CHE Y C. Manual of inorganic thermodynamics data[M]. Shenyang:Northeastern University Press,1993:475-476.
[15] 孙培秋,朱德贵,蒋小松,等. 原位合成TiB2-TiC0.8-SiC复相陶瓷的微观组织与性能研究[J]. 无机材料学报,2013,28(4):363-368. SUN P Q, ZHU D G, JIANG X S, et al. Research on microstructures and properties of in-situ synthesis of TiB2-TiC0.8-SiC multiphase ceramics[J]. Journal of Inorganic Materials, 2013, 28(4):363-368.
[16] 宗琳,刘政军. 原位合成TiC-M7C3金属复合涂层[J]. 热加工工艺,2012,41(8):141-143. ZONG L, LIU Z J. In-situ synthesis of TiC-M7C3 metal-ceramics composite coating[J]. Hot Working Technology, 2012, 41(8):141-143.
[17] WANG Z T, ZHOU X H, ZHAO G G. Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating[J]. Transactions of Nonferrous Metals Society of China,2008, 18(4):831-835.
[1] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[2] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[3] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[4] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[5] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[6] 廖万能, 刘雪峰, 王思清. 控温铸型连铸Cu-Ni-Si合金的加工工艺与组织性能的关系及其机理[J]. 材料工程, 2019, 47(10): 44-52.
[7] 税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪. Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响[J]. 材料工程, 2018, 46(9): 73-79.
[8] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
[9] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[10] 于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
[11] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[12] 龙伟民, 路全彬, 何鹏, 薛松柏, 吴铭方, 薛鹏. 钎焊过程原位合成Al-Si-Cu合金及接头性能[J]. 材料工程, 2016, 44(6): 17-23.
[13] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[14] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[15] 刘大双, 刘仁培, 魏艳红. 石墨对无渣自保护药芯焊丝性能的影响[J]. 材料工程, 2014, 0(7): 28-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn