Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (2): 142-151    DOI: 10.11868/j.issn.1001-4381.2017.000242
  综述 本期目录 | 过刊浏览 | 高级检索 |
脉冲微孔喷射法单分散球形微粒子的制备及其应用
董伟(), 李文畅, 康世薇, 许富民, 韩阳, 白兆丰
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method
Wei DONG(), Wen-chang LI, Shi-wei KANG, Fu-min XU, Yang HAN, Zhao-feng BAI
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(4141 KB)   HTML ( 23 )  
输出: BibTeX | EndNote (RIS)      
摘要 

介绍了用于制备单分散高精度球形微粒子的脉冲微孔喷射技术,说明了该技术的工作原理,根据所能制备材料的熔点不同,分为低熔点压片式喷射设备和高熔点传动杆式喷射设备。脉冲微孔法制备出的粒子具有单分散,粒径均一可控,圆球度高,热历史一致的优点,通过介绍该方法制备的粒子在电子封装、生物工程、微成型、金属熔滴的快速凝固分析、增材制造等领域的应用,说明了该技术蕴涵的巨大潜力。可以预见,随着研究的深入,该技术因其独有的特点将具有更广阔的发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董伟
李文畅
康世薇
许富民
韩阳
白兆丰
关键词 脉冲微孔喷射法单分散粒子球形粒径可控    
Abstract

A novel technology called pulsated orifice ejection method(POEM) and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.

Key wordspulsated orifice ejection method    mono-sized particle    spherical    controllable particle size
收稿日期: 2017-03-06      出版日期: 2018-02-01
中图分类号:  TB34  
基金资助:辽宁省自然科学基金(201602150);中央高校基本科研业务费专项资金(DUT15ZD239);国家自然科学基金(51571050)
通讯作者: 董伟     E-mail: w-dong@dlut.edu.cn
作者简介: 董伟(1965-), 男, 副教授, 博士生导师, 现从事单分散微米级粒子制备与液滴沉积成型方向的研究, 联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学新三束实验室208(116024),E-mail: w-dong@dlut.edu.cn
引用本文:   
董伟, 李文畅, 康世薇, 许富民, 韩阳, 白兆丰. 脉冲微孔喷射法单分散球形微粒子的制备及其应用[J]. 材料工程, 2018, 46(2): 142-151.
Wei DONG, Wen-chang LI, Shi-wei KANG, Fu-min XU, Yang HAN, Zhao-feng BAI. Fabrication and Application of Mono-sized Spherical Micro Particles by Pulsated Orifice Ejection Method. Journal of Materials Engineering, 2018, 46(2): 142-151.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000242      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/142
Fig.1  压片式脉冲微孔喷射法示意图[18]
Fig.2  传动杆式脉冲微孔喷射法示意图
Fig.3  锡球和铜核球在电子封装中的对比图
Fig.4  POEM制备的Cu粒子的SEM图像(a)及其粒径分布(b)
Fig.5  脉冲微孔喷射法制备β-TCP粒子原理图
Fig.6  POEM制备的β-TCP粒子的SEM图像(a)及其粒径分布(b)
Fig.7  POEM制备的[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃粒子的SEM图像
Fig.8  [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃粒子的非晶特性
(a)XRD图像;(b)TEM图像
Fig.9  [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃粒子的冷却速率和直径的关系
Fig.10  [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4金属玻璃粒子制备的齿轮(a)及其TEM图像(b)[52]
Fig.11  Bi-Ga偏晶合金核壳结构
Fig.12  POEM制备的Al粒子的SEM图像
1 张曙光, 何礼君, 朱学新, 等. 适用于先进电子封装的精密焊球制备技术[J]. 中国有色金属学报, 2004, 14 (增刊2): 501- 505.
1 ZHANG S G , HE L J , ZHU X X , et al. Fabrication technologies of solder ball for advanced electronic package[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (Suppl 2): 501- 505.
2 ZHAO N , ZHONG Y , HUANG M L , et al. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient[J]. Scientific Reports, 2015, (5): 13491.
3 KANG S K , SARKHEL A K . Lead (Pb)-free solders for electronic packaging[J]. Journal of Electronic Materials, 1994, 23 (8): 701- 707.
doi: 10.1007/BF02651362
4 ALAM M O , WU B Y , CHAN Y C , et al. High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints[J]. Acta Materialia, 2006, 54 (3): 613- 621.
doi: 10.1016/j.actamat.2005.09.031
5 ATTIA U M , ALCOCK J R . A review of micro-powder injection moulding as a microfabrication technique[J]. Journal of Micromechanics & Microengineering, 2011, 21 (4): 43001- 43022.
6 ATTIA U M , ALOCOCK J R . Fabrication of hollow, 3D, micro-scale metallic structures by micro-powder injection moulding[J]. Journal of Materials Processing Technology, 2012, 212 (10): 2148- 2153.
doi: 10.1016/j.jmatprotec.2012.05.022
7 LU K , REYNOLDS W T . 3DP process for fine mesh structure printing[J]. Powder Technology, 2008, 187 (1): 11- 18.
doi: 10.1016/j.powtec.2007.12.017
8 OLAKANMI E O , COCHRANE R F , DALGARNO K W . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74, 401- 477.
doi: 10.1016/j.pmatsci.2015.03.002
9 韩凤麟. 2014年全球粉末冶金产业发展概况[J]. 粉末冶金工业, 2014, 24 (6): 1- 5.
9 HAN F L . The global development of powder metallurgy industry in 2014[J]. Powder Metallurgy Industry, 2014, 24 (6): 1- 5.
10 黄伯云, 易健宏. 现代粉末冶金材料和技术发展现状(一)[J]. 上海金属, 2007, 29 (4): 1- 5.
10 HUANG B Y , YI J H. . Current development of modern powder metallurgy materials and technologies(一)[J]. Shanghai Metals, 2007, 29 (4): 1- 5.
11 付一凡. 脉冲微孔喷射法均匀球形微米级粒子的制备及其影响因素研究[D]. 大连: 大连理工大学, 2013.
11 FU Y F. Fabrication and influencing factors of mono-sized spherical micro particles by pulsated orifice ejection method[D]. Dalian: Dalian University of Technology, 2013.
12 MASUDA S , TAKAGI K , DONG W , et al. Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method[J]. Journal of Crystal Growth, 2008, 310 (11): 2915- 2922.
doi: 10.1016/j.jcrysgro.2008.01.050
13 DONG W , MASUDA S , TAKAGI K , et al. The development of mono-sized micro silicon particles for spherical solar cells by pulsated orifice ejection method[J]. Materials Science Forum, 2007, 534-536, 149- 152.
doi: 10.4028/www.scientific.net/MSF.534-536
14 ROY S , ANDO T . Nucleation kinetics and microstructure evolution of traveling ASTM F75 droplets[J]. Advanced Engineering Materials, 2010, 12 (9): 912- 919.
doi: 10.1002/adem.201000136
15 黄华, 齐乐华, 杨方, 等. 均匀液滴产生技术及其应用[J]. 制造技术与机床, 2008, (6): 59- 63.
15 HUANG H , QI L H , YANG F , et al. Uniform droplets forming technology and application[J]. Manufacturing Technology & Machine Tool, 2008, (6): 59- 63.
16 FU Y F , DONG W , LI Y , et al. Simulation of the effects of the physical properties on particle formation of pulsated orifice ejection method (POEM)[J]. Advanced Materials Research, 2012, 509, 161- 165.
doi: 10.4028/www.scientific.net/AMR.509
17 ZHAO L, XU F M, LU D, et al. Simulation of 63Sn-37Pb BGA packaging particle formation based on pulsated orifice ejection method (POEM)[C]//201314th International Conference on Electronic Packaging Technology. Dalian: ICEPT, 2013: 338-342.
18 董伟, 谭毅, 李颖. 一种制备低熔点焊球的方法及装置: CN201010242074. 8[P]. 2010-07-29.
18 DONG W, TAN Y, LI Y. Method and device for preparing low melting point solder balls: CN201010242074. 8[P]. 2010-07-29.
19 彭旭, 董伟, 谭毅. 一种小孔喷射制备均一凝固粒子的方法及装置: CN201010542118. 7[P]. 2012-07-04.
19 PENG X, DONG W, TAN Y. Method and device for preparing uniform solidified particles by orifice injection: CN201010542118. 7[P]. 2012-07-04.
20 康世薇. 单分散高熔点金属球形微粒子制备装置的开发[D]. 大连: 大连理工大学, 2017.
20 KANG S W. Development of apparatus for preparing mono-sized spherical metal micro particles with high melting point[D]. Dalian: Dalian University of Technology, 2017.
21 鲁栋. 脉冲微孔均匀金属液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2014.
21 LU D. Deposition forming technology based on mono-sized metal droplets prepared by pulsated orifice ejection method(POEM)[D]. Dalian: Dalian University of Technology, 2014.
22 盖如坤. 脉冲微孔液滴喷射沉积成型的研究[D]. 大连: 大连理工大学, 2015.
22 GAI R K. Droplets deposition forming based on pulsated orifice ejection method(POEM)[D]. Dalian: Dalian University of Technology, 2015.
23 魏宇婷. 脉冲微孔液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2016.
23 WEI Y T. Droplets deposition forming technology based on pulsated orifice ejection method[D]. Dalian: Dalian University of Technology, 2016.
24 董伟, 魏宇婷, 康世薇, 等. 基于脉冲微孔喷射的液滴沉积成型[J]. 材料工程, 2016, 44 (10): 1- 7.
doi: 10.11868/j.issn.1001-4381.2016.10.001
24 DONG W , WEI Y T , KANG S W , et al. Droplets deposition based on pulsated orifice ejection[J]. Journal of Materials Engineering, 2016, 44 (10): 1- 7.
doi: 10.11868/j.issn.1001-4381.2016.10.001
25 李颖. 均匀球形微米级粒子的制备及评价研究[D]. 大连: 大连理工大学, 2012.
25 LI Y. Fabrication and characterization of mono-sized spherical micro particles[D]. Dalian: Dalian University of Technology, 2012.
26 赵丽. 基于脉冲微孔喷射法(POEM)制备微粒子的理论建模与数值模拟[D]. 大连: 大连理工大学, 2014.
26 ZHAO L. Theoretical modeling and numerical simulation of fabrication micro particles based on pulsated orifice ejection method (POEM)[D]. Dalian: Dalian University of Technology, 2014.
27 关晓丹, 梁万雷. 微电子封装技术及发展趋势综述[J]. 北华航天工业学院学报, 2013, 23 (1): 34- 37.
27 GUAN X D , LIANG W L . An overview of microelectronic packaging technology and its development trend[J]. Journal of North China Institute of Aerospace Engineering, 2013, 23 (1): 34- 37.
28 LU Y D , HE X Q , EN Y F , et al. Polarity effect of electromigration on intermetallic compound formation in SnPb solder joints[J]. Acta Materialia, 2009, 57 (8): 2560- 2566.
doi: 10.1016/j.actamat.2009.02.015
29 JIN Y, BARATON X, YOON S W, et al. Next generation eWLB (embedded wafer level BGA) packaging[C]//2010 Electronics Packaging Technology Conference (EPTC) Proceedings. Singapore: EPTC, 2010: 520-526.
30 乔芝郁, 谢允安, 曹战民, 等. 无铅锡基钎料合金设计和合金相图及其计算[J]. 中国有色金属学报, 2004, 14 (11): 1789- 1798.
doi: 10.3321/j.issn:1004-0609.2004.11.001
30 QIAO Z Y , XIE Y A , CAO Z M , et al. Design of lead-free solder alloy and alloy phase diagram calculation[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (11): 1789- 1798.
doi: 10.3321/j.issn:1004-0609.2004.11.001
31 HIROYOSHI K, TOMOHIKO H, ATSUSHI I, et al. CU CORE BALL: WO/2014/203348[P]. 2014-12-24.
32 LI G , WANG Q , LI D , et al. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters[J]. Physics Letters A, 2008, 372 (45): 6764- 6769.
doi: 10.1016/j.physleta.2008.09.043
33 PASSOW C H. A study of spray forming using uniform droplet sprays[D]. Cambridge: Massachusetts Institute of Technology, 1992.
34 RAYLEIGH L . On the instability of jet[J]. Proceedings of the London Mathematical Society, 2015, 10 (1): 4- 13.
35 DOI Y , IWANAGA H , SHIBUTANI T , et al. Osteoclastic responses to various calcium phosphates in cell cultures (pages 424-433)[J]. Journal of Biomedical Materials Research Part A, 1999, 47 (3): 424- 433.
doi: 10.1002/(ISSN)1097-4636
36 WANG X P , YE J D , WANG Y J , et al. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube[J]. Journal of the American Ceramic Society, 2007, 90 (3): 962- 964.
doi: 10.1111/jace.2007.90.issue-3
37 GBURECK U , SPATZ K , THULL R . Improvement of mechanical properties of self setting calcium phosphate bone cements mixed with different metal oxides[J]. Materialwissenschaft Und Werkstofftechnik, 2003, 34 (12): 1036- 1040.
doi: 10.1002/(ISSN)1521-4052
38 XU H H , QUINN J B . Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity[J]. Biomaterials, 2002, 23 (1): 193- 202.
doi: 10.1016/S0142-9612(01)00095-3
39 GU T , SHI H , YE J . Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2012, 100 (2): 350- 359.
40 董伟, 许富民, 康世薇, 等. 一种制备单分散球形多孔β-TCP粒子的装置及方法: CN2014105926020. 0[P]. 2014-10-28.
40 DONG W, XU F M, KANG S W, et al. Device and method for preparing monodisperse spherical porous beta-TCP particles: CN2014105926020. 0[P]. 2014-10-28.
41 张子会. 单分散β-TCP粒子复合磷酸钙骨水泥的制备及性能研究[D]. 大连: 大连理工大学, 2014.
41 ZHANG Z H. Preparation and characteristic of calcium phosphate cement incorporating with mono-sized β-TCP micro particles[D]. Dalian: Dalian University of Technology, 2014.
42 KUMAR G , TANG H X , SCHROERS J . Nanomoulding with amorphous metals[J]. Nature, 2009, 457 (7231): 868- 872.
doi: 10.1038/nature07718
43 JEONG H G , YOO S J , KIM W J . Micro-forming of Zr65Al 10Ni10Cu15, metallic glasses under superplastic condition[J]. Journal of Alloys & Compounds, 2009, 483 (1/2): 283- 285.
44 INOUE A , TAKEUCHI A . Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59 (6): 2243- 2267.
doi: 10.1016/j.actamat.2010.11.027
45 INOUE A , SHEN B L , CHANG C T . Super-high strength of over 4000MPa for Fe-based bulk glassy alloys in[(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system[J]. Acta Materialia,
46 ZHANG W , FANG C , LI Y . Ferromagnetic Fe-based bulk metallic glasses with high thermoplastic formability[J]. Scripta Materialia, 2013, 69 (1): 77- 80.
doi: 10.1016/j.scriptamat.2013.03.003
47 CATTO F L , YONAMINE T , KIMINAMI C S , et al. Amorphous phase formation by spray forming of alloys[(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 and Fe66B30Nb4 modified with Ti96Nb4 and Fe66B30Nb4 modified with Ti[J]. Journal of Alloys & Compounds, 2011, 509 (11): 148- 154.
48 周晚珠, 宗伟, 朱杰, 等. 雾化法制备铁基非晶软磁合金粉末的研究[J]. 材料研究与应用, 2016, 10 (1): 43- 47.
48 ZHOU W Z , ZONG W , ZHU J , et al. Study on preparation of atomized Fe-based amorphous soft magnetic alloy powder[J]. Materials Research and Application, 2016, 10 (1): 43- 47.
49 MIURA A , DONG W , FUKUE M , et al. Preparation of Fe-based monodisperse spherical particles with fully glassy phase[J]. Journal of Alloys & Compounds, 2011, 509 (18): 5581- 5586.
50 LI Y , DONG W , FU Y F , et al. The critical cooling rate of Fe-based mono-sized spherical particles with fully glassy phase[J]. Advanced Materials Research, 2012, 509, 185- 191.
doi: 10.4028/www.scientific.net/AMR.509
51 李颖, 董伟, 三浦彩子, 等. 球形铁基金属玻璃单分散粒子的制备及评价[J]. 无机材料学报, 2012, 27 (8): 849- 854.
51 LI Y , DONG W , MIURA A , et al. Fabrication and characterization of mono-sized spherical Fe-based metallic glass micro-particles[J]. Journal of Inorganic Materials, 2012, 27 (8): 849- 854.
52 YODOSHI N , YAMADA R , KAWASAKI A , et al. Micro viscous flow processing of Fe-based metallic glassy particles[J]. Journal of Alloys & Compounds, 2014, 615, 61- 66.
53 WANG C P , LIU X J , OHNUMA I , et al. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297 (5583): 990- 993.
doi: 10.1126/science.1073050
54 LUO B C , LIU X R , WEI B . Macroscopic liquid phase separation of Fe-Sn immiscible alloy investigated by both experiment and simulation[J]. Journal of Applied Physics, 2009, 106 (5): 053523- 053523.
doi: 10.1063/1.3211302
55 付名笔. 单分散Bi-Ga核壳粒子形貌控制及热循环性能[D]. 大连: 大连理工大学, 2014.
55 FU M B. Research on morphology control and thermal cycling behavior of mono-sized Bi-Ga core-shell particles[D]. Dalian: Dalian University of Technology, 2014.
56 RAYNA T , STRIUKOVA L . From rapid prototyping to home fabrication:how 3D printing is changing business model innovation[J]. Technological Forecasting & Social Change, 2015, 102, 214- 224.
57 KRUTH J P , LEU M C , NAKAGAWA T . Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals Manufacturing Technology, 1998, 47 (2): 525- 540.
doi: 10.1016/S0007-8506(07)63240-5
58 OLAKANMI E O . Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders:effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 2013, 213 (8): 1387- 1405.
doi: 10.1016/j.jmatprotec.2013.03.009
59 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
59 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
60 王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36 (4): 89- 98.
60 WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
61 李晓延, 严永长. 电子封装焊点可靠性及寿命预测方法[J]. 机械强度, 2005, 27 (4): 470- 479.
61 LI X Y , YAN Y C . Reliability and life prediction methodologies for solder joints of electronic packages[J]. Journal of Mechanical Strength, 2005, 27 (4): 470- 479.
[1] 董伟, 孟瑶, 许富民, 韩阳, 王延洋, 陈楷. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[2] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[3] 蔡基利, 吴和保, 刘富初, 樊自田. 微滴喷射快速成形Al2O3陶瓷微球的性能[J]. 材料工程, 2018, 46(11): 84-89.
[4] 董伟, 李文畅, 许富民, 韩阳, 张伟. 单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价[J]. 材料工程, 2018, 46(10): 30-36.
[5] 张彩军, 高立娜, 胡闻佳, 朱立光. 正三棱锥形夹杂物诱导晶内铁素体形核模型研究[J]. 材料工程, 2017, 45(7): 27-33.
[6] 董伟, 魏宇婷, 康世薇, 盖如坤, 许富民, 鲁栋. 基于脉冲微孔喷射的液滴沉积成型[J]. 材料工程, 2016, 44(10): 1-7.
[7] 董伟, 李颖, 付一凡, 谭毅. 均一球形微米级粒子制备技术的研究进展[J]. 材料工程, 2012, 0(9): 92-98.
[8] 叶荣昌, 宗毳, 龙毅. 磁性蓄冷材料HoCu2雾化粉末的制备研究[J]. 材料工程, 2008, 0(12): 34-37.
[9] 崔岩. 以自蔓延高温合成SiC颗粒为增强体的光学/仪表级铝基复合材料[J]. 材料工程, 2001, 0(12): 12-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn