A novel technology called pulsated orifice ejection method(POEM) and used for preparing mono-sized and high-precision spherical micro particles was introduced in this article. The working principle of the technique was illustrated and it was in two modes:low-melting point diaphragm mode and high-melting point rod mode, depending on the different melting points of materials. The particles prepared by POEM have the advantages of mono-sized, uniform and controllable particle size, high sphericity, and consistent thermal history. By introducing the application of particles prepared by this method, showing the huge application prospects of this technology in electronic packaging, bioengineering, micro-fabrication, rapid solidification analysis of metal droplets, additive manufacturing and so on.With the development of POEM, this technology is predicted to have wider prospects due to its unique characteristics.
ZHANG S G , HE L J , ZHU X X , et al. Fabrication technologies of solder ball for advanced electronic package[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (Suppl 2): 501- 505.
2
ZHAO N , ZHONG Y , HUANG M L , et al. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient[J]. Scientific Reports, 2015, (5): 13491.
3
KANG S K , SARKHEL A K . Lead (Pb)-free solders for electronic packaging[J]. Journal of Electronic Materials, 1994, 23 (8): 701- 707.
doi: 10.1007/BF02651362
4
ALAM M O , WU B Y , CHAN Y C , et al. High electric current density-induced interfacial reactions in micro ball grid array (μBGA) solder joints[J]. Acta Materialia, 2006, 54 (3): 613- 621.
doi: 10.1016/j.actamat.2005.09.031
5
ATTIA U M , ALCOCK J R . A review of micro-powder injection moulding as a microfabrication technique[J]. Journal of Micromechanics & Microengineering, 2011, 21 (4): 43001- 43022.
6
ATTIA U M , ALOCOCK J R . Fabrication of hollow, 3D, micro-scale metallic structures by micro-powder injection moulding[J]. Journal of Materials Processing Technology, 2012, 212 (10): 2148- 2153.
doi: 10.1016/j.jmatprotec.2012.05.022
7
LU K , REYNOLDS W T . 3DP process for fine mesh structure printing[J]. Powder Technology, 2008, 187 (1): 11- 18.
doi: 10.1016/j.powtec.2007.12.017
8
OLAKANMI E O , COCHRANE R F , DALGARNO K W . A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74, 401- 477.
doi: 10.1016/j.pmatsci.2015.03.002
FU Y F. Fabrication and influencing factors of mono-sized spherical micro particles by pulsated orifice ejection method[D]. Dalian: Dalian University of Technology, 2013.
12
MASUDA S , TAKAGI K , DONG W , et al. Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method[J]. Journal of Crystal Growth, 2008, 310 (11): 2915- 2922.
doi: 10.1016/j.jcrysgro.2008.01.050
13
DONG W , MASUDA S , TAKAGI K , et al. The development of mono-sized micro silicon particles for spherical solar cells by pulsated orifice ejection method[J]. Materials Science Forum, 2007, 534-536, 149- 152.
doi: 10.4028/www.scientific.net/MSF.534-536
14
ROY S , ANDO T . Nucleation kinetics and microstructure evolution of traveling ASTM F75 droplets[J]. Advanced Engineering Materials, 2010, 12 (9): 912- 919.
doi: 10.1002/adem.201000136
HUANG H , QI L H , YANG F , et al. Uniform droplets forming technology and application[J]. Manufacturing Technology & Machine Tool, 2008, (6): 59- 63.
16
FU Y F , DONG W , LI Y , et al. Simulation of the effects of the physical properties on particle formation of pulsated orifice ejection method (POEM)[J]. Advanced Materials Research, 2012, 509, 161- 165.
doi: 10.4028/www.scientific.net/AMR.509
17
ZHAO L, XU F M, LU D, et al. Simulation of 63Sn-37Pb BGA packaging particle formation based on pulsated orifice ejection method (POEM)[C]//201314th International Conference on Electronic Packaging Technology. Dalian: ICEPT, 2013: 338-342.
PENG X, DONG W, TAN Y. Method and device for preparing uniform solidified particles by orifice injection: CN201010542118. 7[P]. 2012-07-04.
20
康世薇. 单分散高熔点金属球形微粒子制备装置的开发[D]. 大连: 大连理工大学, 2017.
20
KANG S W. Development of apparatus for preparing mono-sized spherical metal micro particles with high melting point[D]. Dalian: Dalian University of Technology, 2017.
21
鲁栋. 脉冲微孔均匀金属液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2014.
21
LU D. Deposition forming technology based on mono-sized metal droplets prepared by pulsated orifice ejection method(POEM)[D]. Dalian: Dalian University of Technology, 2014.
22
盖如坤. 脉冲微孔液滴喷射沉积成型的研究[D]. 大连: 大连理工大学, 2015.
22
GAI R K. Droplets deposition forming based on pulsated orifice ejection method(POEM)[D]. Dalian: Dalian University of Technology, 2015.
23
魏宇婷. 脉冲微孔液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2016.
23
WEI Y T. Droplets deposition forming technology based on pulsated orifice ejection method[D]. Dalian: Dalian University of Technology, 2016.
DONG W , WEI Y T , KANG S W , et al. Droplets deposition based on pulsated orifice ejection[J]. Journal of Materials Engineering, 2016, 44 (10): 1- 7.
doi: 10.11868/j.issn.1001-4381.2016.10.001
25
李颖. 均匀球形微米级粒子的制备及评价研究[D]. 大连: 大连理工大学, 2012.
25
LI Y. Fabrication and characterization of mono-sized spherical micro particles[D]. Dalian: Dalian University of Technology, 2012.
ZHAO L. Theoretical modeling and numerical simulation of fabrication micro particles based on pulsated orifice ejection method (POEM)[D]. Dalian: Dalian University of Technology, 2014.
GUAN X D , LIANG W L . An overview of microelectronic packaging technology and its development trend[J]. Journal of North China Institute of Aerospace Engineering, 2013, 23 (1): 34- 37.
28
LU Y D , HE X Q , EN Y F , et al. Polarity effect of electromigration on intermetallic compound formation in SnPb solder joints[J]. Acta Materialia, 2009, 57 (8): 2560- 2566.
doi: 10.1016/j.actamat.2009.02.015
29
JIN Y, BARATON X, YOON S W, et al. Next generation eWLB (embedded wafer level BGA) packaging[C]//2010 Electronics Packaging Technology Conference (EPTC) Proceedings. Singapore: EPTC, 2010: 520-526.
QIAO Z Y , XIE Y A , CAO Z M , et al. Design of lead-free solder alloy and alloy phase diagram calculation[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (11): 1789- 1798.
doi: 10.3321/j.issn:1004-0609.2004.11.001
31
HIROYOSHI K, TOMOHIKO H, ATSUSHI I, et al. CU CORE BALL: WO/2014/203348[P]. 2014-12-24.
32
LI G , WANG Q , LI D , et al. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters[J]. Physics Letters A, 2008, 372 (45): 6764- 6769.
doi: 10.1016/j.physleta.2008.09.043
33
PASSOW C H. A study of spray forming using uniform droplet sprays[D]. Cambridge: Massachusetts Institute of Technology, 1992.
34
RAYLEIGH L . On the instability of jet[J]. Proceedings of the London Mathematical Society, 2015, 10 (1): 4- 13.
35
DOI Y , IWANAGA H , SHIBUTANI T , et al. Osteoclastic responses to various calcium phosphates in cell cultures (pages 424-433)[J]. Journal of Biomedical Materials Research Part A, 1999, 47 (3): 424- 433.
doi: 10.1002/(ISSN)1097-4636
36
WANG X P , YE J D , WANG Y J , et al. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube[J]. Journal of the American Ceramic Society, 2007, 90 (3): 962- 964.
doi: 10.1111/jace.2007.90.issue-3
37
GBURECK U , SPATZ K , THULL R . Improvement of mechanical properties of self setting calcium phosphate bone cements mixed with different metal oxides[J]. Materialwissenschaft Und Werkstofftechnik, 2003, 34 (12): 1036- 1040.
doi: 10.1002/(ISSN)1521-4052
38
XU H H , QUINN J B . Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity[J]. Biomaterials, 2002, 23 (1): 193- 202.
doi: 10.1016/S0142-9612(01)00095-3
39
GU T , SHI H , YE J . Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2012, 100 (2): 350- 359.
ZHANG Z H. Preparation and characteristic of calcium phosphate cement incorporating with mono-sized β-TCP micro particles[D]. Dalian: Dalian University of Technology, 2014.
42
KUMAR G , TANG H X , SCHROERS J . Nanomoulding with amorphous metals[J]. Nature, 2009, 457 (7231): 868- 872.
doi: 10.1038/nature07718
43
JEONG H G , YOO S J , KIM W J . Micro-forming of Zr65Al 10Ni10Cu15, metallic glasses under superplastic condition[J]. Journal of Alloys & Compounds, 2009, 483 (1/2): 283- 285.
44
INOUE A , TAKEUCHI A . Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59 (6): 2243- 2267.
doi: 10.1016/j.actamat.2010.11.027
45
INOUE A , SHEN B L , CHANG C T . Super-high strength of over 4000MPa for Fe-based bulk glassy alloys in[(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system[J]. Acta Materialia,
46
ZHANG W , FANG C , LI Y . Ferromagnetic Fe-based bulk metallic glasses with high thermoplastic formability[J]. Scripta Materialia, 2013, 69 (1): 77- 80.
doi: 10.1016/j.scriptamat.2013.03.003
47
CATTO F L , YONAMINE T , KIMINAMI C S , et al. Amorphous phase formation by spray forming of alloys[(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 and Fe66B30Nb4 modified with Ti96Nb4 and Fe66B30Nb4 modified with Ti[J]. Journal of Alloys & Compounds, 2011, 509 (11): 148- 154.
ZHOU W Z , ZONG W , ZHU J , et al. Study on preparation of atomized Fe-based amorphous soft magnetic alloy powder[J]. Materials Research and Application, 2016, 10 (1): 43- 47.
49
MIURA A , DONG W , FUKUE M , et al. Preparation of Fe-based monodisperse spherical particles with fully glassy phase[J]. Journal of Alloys & Compounds, 2011, 509 (18): 5581- 5586.
50
LI Y , DONG W , FU Y F , et al. The critical cooling rate of Fe-based mono-sized spherical particles with fully glassy phase[J]. Advanced Materials Research, 2012, 509, 185- 191.
doi: 10.4028/www.scientific.net/AMR.509
LI Y , DONG W , MIURA A , et al. Fabrication and characterization of mono-sized spherical Fe-based metallic glass micro-particles[J]. Journal of Inorganic Materials, 2012, 27 (8): 849- 854.
52
YODOSHI N , YAMADA R , KAWASAKI A , et al. Micro viscous flow processing of Fe-based metallic glassy particles[J]. Journal of Alloys & Compounds, 2014, 615, 61- 66.
53
WANG C P , LIU X J , OHNUMA I , et al. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297 (5583): 990- 993.
doi: 10.1126/science.1073050
54
LUO B C , LIU X R , WEI B . Macroscopic liquid phase separation of Fe-Sn immiscible alloy investigated by both experiment and simulation[J]. Journal of Applied Physics, 2009, 106 (5): 053523- 053523.
doi: 10.1063/1.3211302
55
付名笔. 单分散Bi-Ga核壳粒子形貌控制及热循环性能[D]. 大连: 大连理工大学, 2014.
55
FU M B. Research on morphology control and thermal cycling behavior of mono-sized Bi-Ga core-shell particles[D]. Dalian: Dalian University of Technology, 2014.
56
RAYNA T , STRIUKOVA L . From rapid prototyping to home fabrication:how 3D printing is changing business model innovation[J]. Technological Forecasting & Social Change, 2015, 102, 214- 224.
57
KRUTH J P , LEU M C , NAKAGAWA T . Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals Manufacturing Technology, 1998, 47 (2): 525- 540.
doi: 10.1016/S0007-8506(07)63240-5
58
OLAKANMI E O . Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders:effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 2013, 213 (8): 1387- 1405.
doi: 10.1016/j.jmatprotec.2013.03.009
ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
LI X Y , YAN Y C . Reliability and life prediction methodologies for solder joints of electronic packages[J]. Journal of Mechanical Strength, 2005, 27 (4): 470- 479.