Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 151-156    DOI: 10.11868/j.issn.1001-4381.2017.000727
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响
张国芳, 翟亭亭, 胡锋, 侯忠辉, 张羊换, 许剑轶
内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010
Effect of Different Sizes of Nano CuO Catalysts on Hydrogen Storage Properties of Mg2Ni Based Composites
ZHANG Guo-fang, ZHAI Ting-ting, HU Feng, HOU Zhong-hui, ZHANG Yang-huan, XU Jian-yi
School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolio, China
全文: PDF(3001 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用沉淀法制备纳米CuO,通过不同煅烧温度控制其晶粒尺寸。XRD测试表明,所得样品为CuO单相结构,晶粒尺寸分别为7.5,14.4nm和23.4nm。利用球磨法制备Mg2Ni-Ni-5%(摩尔分数,下同) CuO复合材料,对材料的电化学性能、动力学性能及气态放氢活化能进行测试分析。结果表明,添加纳米CuO可明显提高材料的最大放电性能,改善Mg基复合材料电极表面的电催化活性,提高材料体相内H的扩散能力。DSC测试表明,纳米CuO复合材料比无催化剂材料的放氢温度降低约50K。通过Kissinger公式计算得到Mg2Ni-Ni和Mg2Ni-Ni-5% CuO600复合材料的放氢活化能分别为86.9kJ/mol和89.3kJ/mol。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张国芳
翟亭亭
胡锋
侯忠辉
张羊换
许剑轶
关键词 纳米CuOMg2Ni-Ni-5% CuO复合材料储氢性能活化能    
Abstract:Nanosized CuO particles were synthesized via precipitation method, and the crystalline sizes were controlled by adjusting different calcinations temperature. XRD result shows that the obtained samples exhibit CuO single phase structure, the crystalline sizes are 7.5, 14.4nm and 23.4nm respectively. Then Mg2Ni-Ni-5%CuO composites were obtained through ball milling technique, the electrochemical hydrogen storage properties, kinetic performances and the activation energies of hydrogen desorption were tested and analyzed. The results show that the maximum discharge capacities and the electrocatalytic activity on the surface and the diffusivities of H in the bulk of the Mg-based composites electrodes are improved by adding the nanosized CuO catalysts. DSC measurement shows that the nanosized CuO catalyst leads to decrease in hydrogen desorption temperature by about 50K than that of composites without CuO. The activation energies of the composites of Mg2Ni-Ni and Mg2Ni-Ni -5% CuO600,which are calculated by Kissinger formula, are 86.9kJ/mol and 89.3kJ/mol respectively.
Key wordsnanosized CuO    Mg2Ni-Ni-5%CuO composite    hydrogen storage property    activation energy
收稿日期: 2017-06-07      出版日期: 2018-07-20
中图分类号:  TG139.7  
通讯作者: 张国芳(1981-),女,副教授,博士,研究方向:储氢材料,纳米材料,联系地址:内蒙古包头市昆区阿尔丁大街7号内蒙古科技大学材料与冶金学院(014010),E-mail:afang1001@126.com     E-mail: afang1001@126.com
引用本文:   
张国芳, 翟亭亭, 胡锋, 侯忠辉, 张羊换, 许剑轶. 纳米CuO催化剂晶粒尺寸对Mg2Ni基复合材料储氢性能的影响[J]. 材料工程, 2018, 46(7): 151-156.
ZHANG Guo-fang, ZHAI Ting-ting, HU Feng, HOU Zhong-hui, ZHANG Yang-huan, XU Jian-yi. Effect of Different Sizes of Nano CuO Catalysts on Hydrogen Storage Properties of Mg2Ni Based Composites. Journal of Materials Engineering, 2018, 46(7): 151-156.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000727      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/151
[1] KOHNO T, YAMAMOTO M, KANDA M. Electrochemical properties of mechanically ground Mg-Ni alloy[J]. Journal of Alloys and Compounds, 1999, 293/295:643-647.
[2] 张国芳,张羊换,许剑轶,等. Ni-5%RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J], 材料工程,2017, 45(11):72-77. ZHANG G F, ZHANG Y H, XU J Y, et al. Effects of Ni-5%RExOy composites additives on electrochemical hydrogen storage performances of Mg2Ni[J]. Journal of Materials Engineering, 2017, 45(11):72-77.
[3] HANADA N, HIROTOSHI E, ICHIKAWA T, et al. SEM and TEM characterization of magnesium hydride catalyzed with Ni nano-particle or Nb2O5[J]. Journal of Alloys and Compounds, 2008, 450:395-399.
[4] VARIN R A, CZUJKO T, WASMUND E B, et al. Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and Inco micrometric-and nanometric-Ni[J]. Journal of Alloys and Compounds, 2007, 446/447:63-66.
[5] BHAT V V, ROUGIER A, AYMARD L, et al. High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2[J]. Journal of Alloys and Compounds, 2008, 460:507-512.
[6] POLANSKI M, BYSTRZYCKI J. Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride[J]. Journal of Alloys and Compounds, 2009, 486:697-701.
[7] SINGH R K, SADHASIVAM T, SHEEJA G I, et al. Effect of different sized CeO2 nano particles on decomposition and hydrogen absorption kinetics of magnesium hydride[J]. International Journal of Hydrogen Energy, 2013, 38:6221-6225.
[8] 李芬,雷涛,杨莹,等. 纳米氧化铜的制备及其室温脱除H2S的性能研究[J]. 材料工程,2015, 43(10):1-6. LI F, LEI T, YANG Y, et al. Preparation of nano-CuO and its removal performance of H2S at room temperature[J]. Journal of Materials Engineering, 2015, 43(10):1-6.
[9] RAMYA V, NEYVASAGAM K, CHANDRAMOHAN R, et al. Studies on chemical bath deposited CuO thin films for solar cells application[J]. Journal of Materials Science:Materials in Electronics, 2015, 26:8489-8496.
[10] GAO X P, BAO J L, PAN G L, et al. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery[J]. The Journal of Physical Chemistry B, 2004, 108:5547-5551.
[11] LI Y R, WANG X, YANG Q, et al. Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors[J]. Electrochimica Acta, 2017, 234:63-70.
[12] SUBBULEKSHMI N L, SUBRAMANIAN E. Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline[J]. Journal of Environmental Chemical Engineering, 2017, 5:1360-1371.
[13] LI B X, HAO Y G, ZHANG B S, et al. A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers[J]. Applied Catalysis A:General, 2017, 531:1-12.
[14] DU X Q, HUANG J W, FENG Y Y, et al. Flower-like 3D CuO microsphere acting as photocatalytic water oxidation catalyst[J]. Chinese Journal of Catalysis, 2016, 37:123-134.
[15] OELERICH W, KLASSEN T, BORMANN R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J]. Journal of Alloys and Compounds, 2001, 315(1/2):237-242.
[16] ZHANG Y H, JIAO L F, YUAN H T, et al. Study on the electrochemical properties of MgNi-CuO hydrogen storage composite materials[J]. Journal of Alloys and Compounds, 2009, 481:639-643.
[17] LI R F, WAN J, WANG F, et al. Effect of non-stoichiometry on microstructure and electrochemical performance of La0.8GdxMg0.2Ni3.15Co0.25Al0.1 (x=0-0.4) hydrogen storage alloys[J]. Journal of Power Sources, 2016, 301:229-236.
[18] RATNAKUMAR B V, WITHAM C, BOEMAN Jr R C, et al. Electrochemical studies on LaNi5-xSnx metal hydride alloys[J]. Journal of The Electrochemical Society, 1996, 143:2578-2584.
[19] KLEPERIS J, WOJCIK G, CZERWINSKI A, et al. Electrochemical behavior of metal hydrides[J]. Journal of Solid State Electrochemistry, 2001, 5(4):229-249.
[20] NOBUHARA K, KASAI H, DINO W A, H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces[J]. Surface Science, 2004, 566/568:703-707.
[21] KURIYAMA N, SAKAI T, MIYAMURA H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes[J]. Journal of Alloys and Compounds, 1993, 202:183-197.
[22] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29:1702-1706.
[1] 宋海硕, 周登凤, 张道海, 郭建兵. 短玻纤增强尼龙10T复合材料的热氧老化性能[J]. 材料工程, 2017, 45(12): 43-49.
[2] 林婷惠, 曹长林, 陈庆华, 钱庆荣, 黄宝铨, 夏新曙, 林新土, 肖荔人. r-PTFE对PBT非等温结晶动力学的影响[J]. 材料工程, 2016, 44(3): 92-96.
[3] 杨中正, 姚亚刚, WONG C P, 陆跃军. 微沸法合成纳米莫来石及活化能的研究[J]. 材料工程, 2015, 43(6): 26-30.
[4] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[5] 庄园园, 司小娟, 陈建军, 程丹丹, Jeong Cheol Kim, 王依民. UHMWPP/UHMWPE合金纤维结晶能力与结晶活化能研究[J]. 材料工程, 2008, 0(10): 239-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn