Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (2): 9-15    DOI: 10.11868/j.issn.1001-4381.2017.000752
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温还原GO制备LiFePO4/石墨烯复合正极材料及表征
邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强
中南林业科技大学 材料科学与工程学院, 长沙 410004
Preparation and Characterization of LiFePO4/Graphene Composite Cathode Materials by High Temperature Reduction GO
DENG Ling-feng, QIN Yu-kun, PENG Hui-yan, LIAN Xiao-hui, WU Yi-qiang
School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
全文: PDF(3820 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO4的电化学性能。电化学测试结果表明,在0.1C时LiFePO4的放电比容量为155mAh/g,LiFePO4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO4/石墨烯复合材料的放电比容量分别为140,119mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓凌峰
覃昱焜
彭辉艳
连晓辉
吴义强
关键词 氧化石墨烯石墨烯喷雾干燥导电网络电化学性能    
Abstract:Micro layer of GO was obtained by micro adjustment and control. LiFePO4/graphene composite cathode materials were synthesized using a spray drying followed by high temperature reduction modification method, to improve conductivity of LiFePO4 with excellent conductivity of graphene. The structure, morphology and electrochemical performance of the composite materials were characterized by XRD, FTIR, SEM, TEM and electrochemical measurement technologies. The three-dimensional conductive network was constructed by graphene composite in material particles, which can improve the charge transfer rate of the interface of electrolyte/electrode materials and the electrochemical performance of LiFePO4. The results show that the discharge specific capacity of LiFePO4 without graphene is only 155mAh/g, while the discharge specific capacity of LiFePO4/graphene is 164mAh/g at 0.1C.The discharge specific capacity of LiFePO4/graphene is 140,119mAh/g at 1,2C,respectively.
Key wordsgraphene oxide(GO)    graphene    spray drying    conductive network    electrochemical performance
收稿日期: 2017-06-13      出版日期: 2018-02-01
中图分类号:  TM912  
通讯作者: 邓凌峰(1970-),男,副教授,博士,主要从事能源材料的研究,联系地址:湖南省长沙市天心区韶山南路498号中南林业科技大学材料学院(410004),denglingfeng168@126.com     E-mail: denglingfeng168@126.com
引用本文:   
邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
DENG Ling-feng, QIN Yu-kun, PENG Hui-yan, LIAN Xiao-hui, WU Yi-qiang. Preparation and Characterization of LiFePO4/Graphene Composite Cathode Materials by High Temperature Reduction GO. Journal of Materials Engineering, 2018, 46(2): 9-15.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000752      或      http://jme.biam.ac.cn/CN/Y2018/V46/I2/9
[1] WANG B,LIU A,ABDULLA W A,et al. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage[J]. Nanoscale,2015,7(19):8819-8828.
[2] OH J,LEE J,HWANG T,et al. Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO4 cathode material[J].Electrochimica Acta,2017,231:85-93.
[3] MILLER D L,KUBISTA K D,RUTTER G M,et al.Observing the quantization of zero mass carriers in graphene[J]. Science,2009,324(5929):924-927.
[4] 杨文彬,张丽,刘菁伟,等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程,2015,43(3):91-97. YANG W B,ZHANG L,LIU J W,et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering,2015,43(3):91-97.
[5] 杨程,陈宇滨,田俊鹏,等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报,2016,36(3):40-56. YANG C,CHEN Y B,TIAN J P,et al. Development in preparation and application of graphene functionalization[J]. Journal of Aeronautical Materials,2016,36(3):40-56.
[6] KUCINSKIS G,BAJARS G,KLEPERIS J. Graphene in lithium ion battery cathode materials:a review[J].Journal of Power Sources,2013,240(31):66-79.
[7] 云强,周园,李翔,等. 石墨烯改性LiFePO4正极材料的研究进展[J]. 电源技术,2015,39(7):1525-1529. YUN Q,ZHOU Y,LI X,et al. Research progress on modification of LiFePO4 by graphene[J]. Chinese Journal of Power Sources,2015,39(7):1525-1529.
[8] WANG Z,GUO H,YAN P. A rapid microwave heating route to synthesize graphene modified LiFePO4/C nanocomposite for rechargeable lithium-ion batteries[J]. Ceramics International,2014,40(10):15801-15806.
[9] LONG Y,SHU Y,MA X,et al.In-situ synthesizing superior high-rate LiFePO4/C nanorods embedded in graphene matrix[J]. Electrochimica Acta,2014,117(4):105-112.
[10] TIAN Z,ZHOU Z,LIU S,et al. Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol-gel method[J]. Solid State Ionics,2015,278:186-191.
[11] DU Y,TANG Y,HUANG F,et al. Preparation of three-dimensional free-standing nano-LiFePO4/graphene composite for high performance lithium ion battery[J]. Rsc Advances,2016,6(57):52279-52283.
[12] NGUYEN V H,GU H B. LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition[J]. Journal of Applied Electrochemistry,2014,44(10):1153-1163.
[13] ZHU X,HU J,WU W,et al. LiFePO4/reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance[J]. Journal of Materials Chemistry A,2014,2(21):7812-7818.
[14] 江虹,蔡光兰,郭瑞松,等. 石墨烯改性LiFePO4/C正极材料的低温电化学性能[J]. 硅酸盐学报,2016,44(7):925-930. JIANG H,CAI G L,GUO R S,et al. Low temperature electrochemical performances of graphene modified LiFePO4/C cathode materials[J]. Journal of the Chinese Ceramic Society,2016,44(7):925-930.
[15] 邓凌峰,余开明,严忠,等. Co2+掺杂石墨烯/LiFePO4锂离子电池复合正极材料的制备与表征[J]. 复合材料学报,2015,32(5):1390-1398. DENG L F,YU K M,YAN Z,et al. Preparation and characterization of Co2+ doped graphene/LiFePO4 composite cathode materials for lithium battery[J]. Acta Materiae Compositae Sinica,2015,32(5):1390-1398.
[16] WU Z S,REN W,WEN L,et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194.
[17] 曹亮,王安安,艾立华,等. 石墨烯在锂离子电池材料性能优化中的应用[J]. 中国有色金属学报,2016,26(4):807-820. CAO L,WANG A A,AI L H,et al. Application of graphene in performance optimization of lithium ion battery materials[J]. The Chinese Journal of Nonferrous Metals,2016,26(4):807-820.
[18] RACCICHINI R,VARZI A,WEI D,et al. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes[J]. Advanced Materials,2017,29(11):1603421.
[19] WU Z S,ZHOU G,YIN L C,et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1(1):107-131.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[9] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[10] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[11] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[12] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[13] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[14] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[15] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn