Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 36-43    DOI: 10.11868/j.issn.1001-4381.2017.000854
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能
陈敬炎1,2, 吴甲民1,2, 陈安南1,2, 肖欢1,2, 李国锐1,2, 刘梦月1,2, 李晨辉1, 史玉升1
1. 华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室, 武汉 430074;
2. 深圳华中科技大学研究院, 广东 深圳 518057
Preparation and Properties of Porous Coal-series Kaolin Ceramics by Selective Laser Sintering
CHEN Jing-yan1,2, WU Jia-min1,2, CHEN An-nan1,2, XIAO Huan1,2, LI Guo-rui1,2, LIU Meng-yue1,2, LI Chen-hui1, SHI Yu-sheng1
1. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, Guangdong, China
全文: PDF(3758 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以煤系高岭土为原料,采用激光选区烧结(SLS)技术制造复杂结构的多孔陶瓷,研究SLS工艺参数和烧结温度对煤系高岭土多孔陶瓷性能的影响。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征煤系高岭土多孔陶瓷的物相组成和显微形貌。结果表明:煤系高岭土/环氧树脂E12复合粉末SLS成型效果良好;当激光功率为5W,扫描速率为2000mm/s,扫描间距为0.13mm,单层层厚为0.15mm时,陶瓷素坯可获得最佳的成型质量,其尺寸误差(Z方向),相对密度和抗弯强度分别为10.43%,37.89%和0.984MPa。随着烧结温度的升高,煤系高岭土多孔陶瓷的收缩率和抗弯强度逐渐增大,而显气孔率则逐渐减小;当烧结温度为1450℃时,煤系高岭土多孔陶瓷具有较高的显气孔率和抗弯强度,分别为44.55%和6.1MPa。煤系高岭土多孔陶瓷的主晶相为莫来石,具有典型的三维网络骨架结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈敬炎
吴甲民
陈安南
肖欢
李国锐
刘梦月
李晨辉
史玉升
关键词 煤系高岭土激光选区烧结多孔陶瓷显气孔率抗弯强度    
Abstract:Porous ceramics with complex structure were prepared by selective laser sintering (SLS) method using coal-series kaolin as raw materials. The effect of SLS process parameters and sintering temperature on properties of porous coal-series kaolin ceramics was investigated. The phase composition and microstructure of porous coal-series kaolin ceramics were characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results indicate that the coal-series kaolin/E12 composite powders can be formed well through SLS method. The green bodies show the superior quality. Z direction error is 10.43%, relative density is 37.89% and bending strength is 0.984MPa under laser power of 5W, scanning speed of 2000mm/s, scanning space of 0.13mm and layer thickness of 0.15mm. With the increase of sintering temperature, the linear shrinkage and bending strength of the porous coal-series kaolin ceramics increase gradually, while the open porosity decreases. The porous coal-series kaolin ceramics possess a high open porosity of 44.55% and a good bending strength of 6.1MPa when the sintering temperature is 1450℃. The main phase in the prepared porous ceramics is mullite phase, and they have a typical three-dimensional skeleton structure.
Key wordscoal-series kaolin    selective laser sintering    porous ceramics    open porosity    bending strength
收稿日期: 2017-07-05      出版日期: 2018-07-20
中图分类号:  TB321  
通讯作者: 吴甲民(1984-),男,博士,讲师,硕士生导师,研究方向为陶瓷增材制造技术及其应用,联系地址:湖北省武汉市洪山区珞喻路1037号华中科技大学东八楼附楼快速制造中心203室(430074),E-mail:jiaminwu@hust.edu.cn     E-mail: jiaminwu@hust.edu.cn
引用本文:   
陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
CHEN Jing-yan, WU Jia-min, CHEN An-nan, XIAO Huan, LI Guo-rui, LIU Meng-yue, LI Chen-hui, SHI Yu-sheng. Preparation and Properties of Porous Coal-series Kaolin Ceramics by Selective Laser Sintering. Journal of Materials Engineering, 2018, 46(7): 36-43.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000854      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/36
[1] 朱宝忠, 谢承卫. 煤矸石综合利用的研究进展[J]. 贵州大学学报(自然科学版), 2007, 24(5):520-525. ZHU B Z, XIE C W. Progress in comprehensive utilizations of coal gangue[J]. Journal of Guizhou University (Natural Sciences), 2007, 24(5):520-525.
[2] 许睿. 粉煤灰合成多孔莫来石陶瓷[D]. 天津:天津大学,2010. XU R. Porous mullite ceramics synthesized by fly ash[D]. Tianjin:Tianjin University, 2010.
[3] 游世海, 郑化安, 付东升, 等. 粉煤灰合成钙长石多孔陶瓷的结构与性能[J]. 硅酸盐学报, 2016, 44(12):1718-1723. YOU S H, ZHENG H A, FU D S, et al. Microstructure and properties of anorthite-based porous ceramics synthesized with fly ash[J]. Journal of the Chinese Ceramic Society, 2016, 44(12):1718-1723.
[4] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics:an application based review[J]. Ceramics International, 2014, 40(10):15351-15370.
[5] 魏青松, 唐萍, 吴甲民, 等. 激光选区烧结多孔堇青石陶瓷微观结构及性能[J]. 华中科技大学学报(自然科学版), 2016, 44(6):46-51. WEI Q S, TANG P, WU J M, et al. Microstructure and mechanical performance of porous cordierite ceramic parts manufactured by selective laser sintering[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(6):46-51.
[6] BOURRET J,MICHOT A, TESSIER-DOYEN N, et al. Thermal conductivity of very porous kaolin-based ceramics[J]. Journal of the American Ceramic Society, 2014, 97(3):938-944.
[7] 游世海, 郑化安, 付东升, 等. 粉煤灰制备微晶玻璃研究进展[J]. 硅酸盐通报, 2014, 33(11):2902-2907. YOU S H, ZHENG H A, FU D S, et al. Review on the preparation of glass-ceramics from fly ash[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2902-2907.
[8] LIU J J, LI Y B, LI Y W, et al. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent[J]. Ceramics International, 2016, 42(7):8221-8228.
[9] HAN D Y, MEI H, XIAO S S, et al. Porous SiCnw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration[J]. Journal of the European Ceramic Society, 2017, 37(3):915-921.
[10] WU J M, ZHANG X Y, YANG J L. Novel porous Si3N4 ceramics prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent[J]. Journal of the European Ceramic Society, 2014, 34(5):1089-1096.
[11] 张学军,唐思熠,肇恒跃,等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2):122-128. ZHANG X J, TANG S Y, ZHAO H Y, et al.Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128.
[12] LIU K, SHI Y S, LI C H, et al. Indirect selective laser sintering of epoxy resin-Al2O3 ceramic powders combined with cold isostatic pressing[J]. Ceramics International, 2014, 40(5):7099-7106.
[13] SHAHZAD K, DECKERS J, BOURY S, et al. Preparation and indirect selective laser sintering of alumina/PA microspheres[J]. Ceramics International, 2012, 38(2):1241-1247.
[14] DECKERS J, SHAHZAD K, CARDON L, et al. Shaping ceramics through indirect selective laser sintering[J]. Rapid Prototyping Journal, 2016, 22(3):544-558.
[15] SHAHZAD K, DECKERS J, ZHANG Z, et al. Additive manufacturing of zirconia parts by indirect selective laser sintering[J]. Journal of the European Ceramic Society, 2014, 34(1):81-89.
[16] 刘凯. 陶瓷粉末激光烧结/冷等静压复合成型技术研究[D]. 武汉:华中科技大学, 2014. LIU K. Investigation on the hybrid technology of laser sintering/cold isostatic pressing about ceramic powder[D]. Wuhan:Huazhong University of Science and Technology, 2014.
[17] 史玉升, 刘凯, 李晨辉, 等. 氧化锆零件激光选区烧结/冷等静压复合成型技术[J]. 机械工程学报, 2014,40(21):118-123. SHI Y S, LIU K, LI C H, et al. Additive manufacturing of zirconia parts via selective laser sintering combined with cold isostatic pressing[J]. Journal of Mechanical Engineering, 2014, 40(21):118-123.
[18] 许林峰. 固相烧结法制备高孔隙莫来石多孔陶瓷的研究[D]. 广州:华南理工大学, 2015. XU L F. Preparation of mullite porous ceramic with high porosity through a solid-phase sintering process[D]. Guangzhou:South China University of Technology, 2015.
[19] 张锦化. 莫来石晶须的制备、生长机理及其在陶瓷增韧中的应用[D].武汉:中国地质大学, 2012. ZHANG J H. Preparation,growth mechanism of mullite whiskers and their enhancement effect on ceramic matrix composites[D]. Wuhan:China University of Geosciences, 2012.
[1] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[2] 陈舒怡, 陈双, 吴甲民, 何宁辉, 史玉升, 李晨辉, 张矿, 崔等, 王永均. 煤系高岭土光固化浆料的流变性能[J]. 材料工程, 2020, 48(3): 142-147.
[3] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
[4] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[5] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[6] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[7] 马林, 文丹妮. 高强隔热刚玉-镁铝尖晶石-莫来石多孔陶瓷材料的制备[J]. 材料工程, 2019, 47(10): 126-132.
[8] 卢国锋, 乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程, 2018, 46(7): 83-87.
[9] 彭美华, 程西云, 周彪, 严茂伟, 张建锋. CNTs-Al2O3多孔陶瓷复合材料的制备与性能[J]. 材料工程, 2016, 44(6): 117-122.
[10] 吕凯, 刘向东, 王浩, 冯华, 李艳芬. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7): 56-61.
[11] 郭霞, 关志东, 刘遂, 晏冬秀, 刘卫平, 孙凯. 修理工艺对边缘封闭蜂窝夹层结构弯曲性能的影响[J]. 材料工程, 2013, 0(12): 27-31.
[12] 杨阳, 赵宏生, 刘中国, 张凯红, 李自强. 成型温度对多孔SiC陶瓷性能的影响[J]. 材料工程, 2011, 0(5): 58-61.
[13] 孙雨薇, 王树彬, 张健. CBS涂层对多孔氮化硅高温高频介电性能的影响[J]. 材料工程, 2011, 0(2): 42-45.
[14] 马壮, 张利军, 于晓东, 王扬卫. Y2O3对反应烧结制备Si3N4多孔陶瓷的影响[J]. 材料工程, 2009, 0(3): 6-8.
[15] 马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现状[J]. 材料工程, 2007, 0(3): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn