Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 29-35    DOI: 10.11868/j.issn.1001-4381.2017.000874
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化热输入参数对Inconel 718合金温度场的影响
张亮1,2, 吴文恒1,2, 卢林1,2, 倪晓晴1,2, 何贝贝1,2, 杨启云1,2, 祝国梁3, 顾芸仰4
1. 上海3D打印材料工程技术研究中心, 上海 200437;
2. 上海材料研究所, 上海 200437;
3. 上海交通大学 材料科学与工程学院, 上海 200240;
4. 新泽西州立罗格斯大学 机械与航天工程学院, 新泽西 皮斯卡塔韦 08854
Effect of Heat Input Parameters on Temperature Field in Inconel 718 Alloy during Selective Laser Melting
ZHANG Liang1,2, WU Wen-heng1,2, LU Lin1,2, NI Xiao-qing1,2, HE Bei-bei1,2, YANG Qi-yun1,2, ZHU Guo-liang3, GU Yun-yang4
1. Shanghai Engineering Research Center of 3D Printing Materials, Shanghai 200437, China;
2. Shanghai Research Institute of Materials, Shanghai 200437, China;
3. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
4. Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway 08854, New Jersey, USA
全文: PDF(3464 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用有限元模拟及实验验证相结合的方法,通过模拟随温度变化的粉体层和已凝固合金层的热物理参数转化及激光往复扫描过程等,研究了不同激光扫描速率和功率条件下,制件温度场分布、熔池大小的变化规律。基于激光线能量密度的激光热输入综合参数,总结了Inconel 718合金激光选区熔化过程中熔池大小的预测方法。结果表明,在激光的作用下,温度场等温线分布呈现椭球型,同时椭球型向已凝固合金层偏移。在本次实验参数研究范围内,激光线能量密度与成型过程中熔池大小之间呈线性增长关系。同时,本研究通过激光选区熔化设备制备了不同激光热输入条件下的Inconel 718合金试样,并对熔池大小进行了实验验证,所得实验数据与模型预测结果吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亮
吴文恒
卢林
倪晓晴
何贝贝
杨启云
祝国梁
顾芸仰
关键词 激光选区熔化有限元模拟温度场熔池大小Inconel 718合金    
Abstract:This article combines the finite element simulation and experimental verification to study the effect of laser power and scanning velocity on the temperature distribution, and the size of molten pool during selective laser melting, through simulating the laser reciprocating scanning and transformation between powder material and solidified alloy during SLM. A temperature dependent thermal-mechanical properties of materials is considered, which includes the properties conversion between powder layer and solidified alloy. By presenting a comprehensive parameter of laser heat input-laser line energy density, the effect of line energy density on molten pool in Inconel 718 alloy is summarized, and the size of molten pool can be predicted. The results indicate that temperature field isotherm distribution presents as ellipsoid with the effect of moving laser, and in addition, ellipsoid shifts to solidified alloy layer. Within the scope of the study parameters, the laser line energy density and the size of molten pool during the deformation exhibit linear growth relationship. Furthermore, several Inconel 718 alloy specimens in different laser input conditions were produced using SLM equipments, in order to verify the simulated molten pool size. The result shows that experimental measurements are in good agreement with the model predictions.
Key wordsselective laser melting    finite element simulation    temperature field    size of molten pool    Inconel 718 alloy Inconel
收稿日期: 2017-07-12      出版日期: 2018-07-20
中图分类号:  TP391.9  
  TB31  
通讯作者: 卢林(1986-),男,博士,工程师,主要研究为3D打印金属粉末,联系地址:上海市邯郸路99号上海材料研究所上海3D打印材料工程技术研究中心(200437),E-mail:lulinws@163.com     E-mail: lulinws@163.com
引用本文:   
张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
ZHANG Liang, WU Wen-heng, LU Lin, NI Xiao-qing, HE Bei-bei, YANG Qi-yun, ZHU Guo-liang, GU Yun-yang. Effect of Heat Input Parameters on Temperature Field in Inconel 718 Alloy during Selective Laser Melting. Journal of Materials Engineering, 2018, 46(7): 29-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000874      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/29
[1] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012(8):92-100. QI H. Review of Inconel 718 alloy:its history,properties,processing and developing substitutes[J].Journal of Materials Engineering, 2012(8):92-100.
[2] 宋宜四, 高万夫, 王超,等. 热处理工艺对Inconel718合金组织、力学性能及耐蚀性能的影响[J]. 材料工程, 2012(6):37-42. SONG Y S,GAO W F,WANG C,et al.Effect of heat treatment technology on microstructure,mechanical property and corrosion resistance of nickel-base alloy Inconel718[J]. Journal of Materials Engineering,2012(6):37-42.
[3] 张永忠, 石力开. 激光快速成形镍基高温合金研究[J]. 航空材料学报, 2002,22(1):22-25. ZHANG Y Z,SHI L K. Research on laser direct deposition of nickel base superalloy[J]. Journal of Aeronautical Materials,2002,22(1):22-25.
[4] 吴文恒, 张亮, 何贝贝,等. 选择性激光熔化增材制造工艺过程模拟研究现状[J]. 理化检验-物理分册, 2016, 52(10):693-697. WU W H, ZHANG L, HE B B, et al. Current status of research on computer simulation of selective laser melting additive manufacturing process[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2016,52(10):693-697.
[5] 肖猛. 直接激光烧结镍基高温合金的工艺研究[D]. 南京:南京航空航天大学, 2006. XIAO M. Research on direct laser metal sintering of nickel-based metal powder material[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2006.
[6] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
[7] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:processing, microstructure and properties[J]. Progress in Materials Science, 2015, 74:401-477.
[8] CHILDS T H C, HAUSER C. Raster scan selective laser melting of the surface layer of a tool steel powder bed[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2005, 219(4):379-384.
[9] MATSUMOTO M, SHIOMI M, OSAKADA K, et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J]. International Journal of Machine Tools & Manufacture, 2002, 42(1):61-67.
[10] GUSAROV A V, YADROITSEV I, BERTRAND P, et al. Heat transfer modelling and stability analysis of selective laser melting[J]. Applied Surface Science, 2007, 254(4):975-979.
[11] GUSAROV A V, SMUROV I. Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting[J]. Applied Surface Science, 2009, 255(10):5595-5599.
[12] WU J, WANG L, AN X. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J]. Optik-International Journal for Light and Electron Optics, 2017,137(5):65-78.
[13] YU G, GU D, DAI D, et al. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy[J]. Journal of Physics D Applied Physics, 2016, 49(13):135501.
[14] ZHANG D Q, CAI Q Z, LIU J H, et al. Select laser melting of W-Ni-Fe powders:simulation and experimental study[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(5):649-658.
[15] RONG T, GU D, SHI Q, et al. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting[J]. Surface and Coatings Technology, 2016, 307:418-427.
[16] CHENG B, SHRESTHA S, CHOU K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 2016, 12:240-251.
[17] 王忻凯, 邢丽, 徐卫平,等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5):8-12. WANG Q K,XING L,XU W P,et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J].Journal of Materials Engineering,2015,43(5):8-12.
[18] KRUTH J P, LEVY G, KLOCKE F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing[J]. CIRP Annals-Manufacturing Technology, 2007, 56(2):730-759.
[19] GU D, WANG H, ZHANG G. Selective laser melting additive manufacturing of Ti-based nanocomposites:the role of nanopowder[J]. Metallurgical and Materials Transactions A, 2014, 45(1):464-476.
[20] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2):299-305.
[21] GOLDAK J, BIBBY M,MOORE J, et al. Computer modeling of heat flow in welds[J]. Metallurgical Transactions B, 1986. 17:587-600.
[22] LEE C H, CHANG K H, PARK J U. Three-dimensional finite element analysis of residual stresses in dissimilar steel pipe welds[J]. Nuclear Engineering and Design, 2013, 256:160-168.
[23] KELLER N, NEUGEBAUER F, XU H, et al. Thermo-mechanical simulation of additive layer manufacturing of titanium aerospace structures[C]//LightMAT, Bremen, Germany,2013.
[24] CRIALES L E,ARISOY Y M,ÖZEL T. Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625[J].The International Journal of Advanced Manufacturing Technology,2016,86(9/12):2653-2666.
[1] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[2] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[3] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[4] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[5] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[6] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[7] 任维彬, 董世运, 徐滨士, 任君华, 郑显柱, 童继凤. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.
[8] 秦文真, 赵军, 李安海. 铝合金活塞铸造过程中模具易失效区域预测[J]. 材料工程, 2017, 45(2): 60-64.
[9] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[10] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[11] 张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
[12] 崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
[13] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[14] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[15] 陈玲, 宇文晅晅, 钟蜀津, 解锦婷. 确定金属型铸造界面传热系数方法的研究[J]. 材料工程, 2012, 0(3): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn