Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (7): 157-164    DOI: 10.11868/j.issn.1001-4381.2017.001308
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超级电容器用马尾藻基超级活性炭的制备及其电化学性能
李诗杰1, 张继刚2, 李金晓1, 韩奎华1,*(), 韩旭东1, 路春美1
1 山东大学 能源与动力工程学院, 济南 250061
2 济南宇煊环保技术有限公司, 济南 250101
Preparation and Electrochemical Property of Gulfweed-based Super Activated Carbon for Supercapacitor
Shi-jie LI1, Ji-gang ZHANG2, Jin-xiao LI1, Kui-hua HAN1,*(), Xu-dong HAN1, Chun-mei LU1
1 School of Energy and Power Engineering, Shandong University, Jinan 250061, China
2 Jinan Yu Xuan Environmental Technology Co., Ltd., Jinan 250101, China
全文: PDF(3325 KB)   HTML ( 35 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以马尾藻为原料,采用KOH活化法制备用于超级电容器的生物质基超级活性炭。制备的超级活性炭不仅比表面积巨大,孔隙结构丰富,而且以海藻作为前驱体原料明显降低了活性炭的生产成本。采用单因素实验法分析了浸渍比、活化温度和活化时间对马尾藻基活性炭孔隙结构(比表面积、孔容及孔径分布等)的影响,探索了制备马尾藻基超级活性炭的最佳工艺条件,并研究了所制活性炭用于制备超级电容器时的电化学性能。采用N2吸附-解吸附、SEM、XRD,恒电流充放电以及循环伏安法等表征手段考察超级活性炭样品的比表面积,孔结构以及电化学性能。实验结果表明,制备马尾藻基超级活性炭的最佳工艺条件为:浸渍比4:1,活化时间120min,活化温度800℃。在该实验条件下制得的活性炭比表面积高达2926m2/g,孔容高达1.536cm3/g,且所有活性炭的孔径大小几乎全部分布在4nm以内,孔径分布均匀。制备的超级电容器以6mol/L的KOH为电解液时,其比电容高达358.5F/g,表现出良好的电化学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李诗杰
张继刚
李金晓
韩奎华
韩旭东
路春美
关键词 KOH活化法马尾藻基超级活性炭超级电容器电化学性能    
Abstract

Gulfweed was used as raw material, and KOH activation method was adopted for producing activated carbons with high specific surface area.The prepared super activated carbon not only has large specific surface area, rich pore structure, but also reduces the production cost of activated carbon by using algae as precursor material. In order to explore the experimental approaches and technological conditions, single factor method was used to analyze the influence of impregnation ratio, activation time and activation temperature on specific surface area, pore structure and surface properties, and the electrochemical performance of super-capacitor based on the prepared activated carbon was studied. Measurements such as N2 adsorption, XRD, SEM, constant current charge-discharge techniques, and the cyclic voltammetry were carried out to investigate specific surface area, pore structure and electrochemical performance. The results show:the best preparation condition is concluded as:impregnation ratio at 4:1, activation time for 120 min and activation temperature at 800℃, on the occasion, the largest specific surface area is 2926m2/g, and the biggest pore volume is 1.536cm3/g with all the pore diameters almost under 4nm evenly. The super-capacitor has a large specific capacitance as 358.5F/g in the 6mol/L KOH electrolyte, which means a very good performance.

Key wordsKOH activation    gulfweed-based super activated carbon    supercapacitor    electrochemical performance
收稿日期: 2017-10-22      出版日期: 2018-07-20
中图分类号:  TQ150  
基金资助:国家自然科学基金(51206096);山东大学基本科研业务费专项资金(2016JC005)
通讯作者: 韩奎华     E-mail: hankh@163.com
作者简介: 韩奎华(1978-)男, 副教授, 博士, 研究方向为生物质能热转化, 联系地址:济南市经十路17923号山东大学能源与动力工程学院热能工程研究所(250061), E-mail:hankh@163.com
引用本文:   
李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
Shi-jie LI, Ji-gang ZHANG, Jin-xiao LI, Kui-hua HAN, Xu-dong HAN, Chun-mei LU. Preparation and Electrochemical Property of Gulfweed-based Super Activated Carbon for Supercapacitor. Journal of Materials Engineering, 2018, 46(7): 157-164.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001308      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/157
Fig.1  新鲜马尾藻的照片
Ultimate analysis(ad)Proximate analysis(ad)
CHONSKCaSiMAFCV
41.415.4234.983.391.6710.931.120.172.410.7314.9371.94
Table 1  马尾藻的工业分析和元素分析(质量分数/%)
Fig.2  制备马尾藻基超级活性炭的工艺流程图
Fig.3  活性炭的N2吸附-解吸附等温线
SampleSBET/
(m2·g-1)
Pore volume/
(cm3·g-1)
Average pore
size/nm
AC3-800-9026171.0252.371
AC4-800-9028221.4892.240
AC5-800-9020491.0502.409
AC4-700-9023071.4512.441
AC4-900-9024601.1632.473
AC4-800-6025091.2352.515
AC4-800-12029261.5362.452
Table 2  活性炭的孔隙结构参数
Fig.4  制得活性炭的孔径分布图
Fig.5  不同活化温度下制得活性炭的SEM图
(a)马尾藻;(b)AC4-700-90;(c)AC4-800-90;(d)AC4-900-90
Fig.6  不同活化温度下制备马尾藻基活性炭的XRD图
Fig.7  不同扫描速率下炭电极的循环伏安曲线
Fig.8  超级电容器在不同电流下的充放电曲线
(a)2mA; (b)4mA
Fig.9  超级电容器在不同电流下的循环充放电曲线
(a)20mA; (b)40mA
Fig.10  不同放电电流条件下活性炭的比电容
1 张浩, 黄新杰, 宗志芳, 等. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45 (6): 67- 72.
doi: 10.11868/j.issn.1001-4381.2016.000979
1 ZHANG H , HUANG X J , ZONG Z F , et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property[J]. Journal of Materials Engineering, 2017, 45 (6): 67- 72.
doi: 10.11868/j.issn.1001-4381.2016.000979
2 耿煜, 宋燕, 钟明, 等. 酚醛基活性炭布的制备及电化学性能研究[J]. 材料工程, 2011, (10): 1- 4.
doi: 10.3969/j.issn.1001-4381.2011.10.001
2 GENG Y , SONG Y , ZHONG M , et al. Investigation of preparation and electrochemical performance of phenolic resin based activated carbon cloth[J]. Journal of Materials Engineering, 2011, (10): 1- 4.
doi: 10.3969/j.issn.1001-4381.2011.10.001
3 马晓军, 赵广杰. 新型生物质碳材料的研究进展[J]. 林业科学, 2008, 44 (3): 147- 150.
doi: 10.11707/j.1001-7488.20080328
3 MA X J , ZHAO G J . Progress of new biomass-based carbon materials[J]. Scientia Silvae Sinicae, 2008, 44 (3): 147- 150.
doi: 10.11707/j.1001-7488.20080328
4 冀有俊, 张双全, 罗朋, 等. 添加剂作用下煤基中孔活性炭的制备[J]. 煤炭转化, 2011, 34 (3): 79- 82.
4 JI Y J , ZHANG S Q , LUO P , et al. Preparation of coal-based mesoporous activated carbons by additive[J]. Coal Conversion, 2011, 34 (3): 79- 82.
5 纪艳芬, 王成军. 石油焦制备高比表面积活性炭技术的研究[J]. 辽宁工业大学学报, 2011, 31 (3): 168- 170.
5 JI Y F , WANG C J . Study on production technique of high surface area activated carbon using petroleum cokes[J]. Journal of Liaoning University of Technology, 2011, 31 (3): 168- 170.
6 MI J , WANG X R , FAN R J , et al. Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance super-capacitors[J]. Energy Fuels, 2012, 2 (8): 5321- 5329.
7 FERRERA-LORENZO N , FUENTE N , SUARE-RUIZ I , et al. KOH activated carbon from conventional and microwave heating system of a macro-algae waste from the agar-agar industry[J]. Fuel Processing Technology, 2014, 121 (1): 25- 31.
8 SONG X L , ZHANG Y , CHANG C M . Novel method for preparing activated carbons with high specific surface area from rice husk[J]. Industrial and Engineering Chemistry Research, 2012, 51 (46): 15075- 15081.
doi: 10.1021/ie3012853
9 ZHANG J B , ZHONG Z P , SHEN D K , et al. Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells[J]. Energy Fuels, 2011, 25 (5): 2187- 2193.
doi: 10.1021/ef200161c
10 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34 (3): 34- 39.
10 ZHANG B B , LIU Y Q , YE Y Y . Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry, 2014, 34 (3): 34- 39.
11 BADIA S G , MONA F I . Activated carbon from cotton stalks by impregnation with phosphoric acid[J]. Materials Letters, 1999, 39 (2): 107- 114.
doi: 10.1016/S0167-577X(98)00225-0
12 ABDEL-NASSER A E , ANDREW J A , ROBERT J A , et al. Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks[J]. Journal of Analytical and Applied Pyrolysis, 2008, 8 (2): 272- 278.
13 HUI D , LE Y , GUANG H . Preparation and characterization of activated carbon from cotton stalks by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution[J]. Journal of Hazardous Materials, 2009, 166 (2): 1514- 1521.
14 SAIT Y , NAILE V , HAKAN D . Preparation of high-surface area activated carbons from paulownia wood by ZnCl2 activation[J]. Microporous and Mesoporous Materials, 2009, 122 (1): 189- 194.
15 HUANG C C , CHEN H . Hydrogen adsorption on modified activated carbon[J]. Hydrogen Energy, 2010, 35 (7): 2777- 2780.
doi: 10.1016/j.ijhydene.2009.05.016
16 RAYMUNDO-PINERO E , LEROUX F , BEGUIN F . A high-performance carbon for super-capacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials, 2006, 18 (14): 1877- 1882.
doi: 10.1002/(ISSN)1521-4095
17 RAYMUNDO-PINERO E , RUIZ V , BLANCO C . Effects of thermal treatment of activated carbon on the electrochemical behavior in super-capacitors[J]. Electrochimica Acta, 2007, 52 (15): 4969- 4973.
doi: 10.1016/j.electacta.2007.01.071
18 KANG D M , LIU Q L , GU J J , et al. "Egg-Box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. American Chemical Society, 2015, 9 (11): 11225- 11233.
19 CUI C Y , XU J T , WANG L , et al. Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties[J]. ACS Applied Materials & Interfaces, 2016, 8, 8568- 8575.
20 MAO F X , GUO W , MA J M . Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes[J]. RSC Advances, 2015, (5): 105248- 105258.
21 MERLET C , ROTENBERG B , MADDEN P A , et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes[J]. Nature Materials, 2012, 11, 306- 310.
doi: 10.1038/nmat3260
22 IOANNIDOU O , ZABANIOTOU A . Agricultural residues as precursors for activated carbon production-a review[J]. Renewable and Sustainable Energy Reviews, 2007, 11 (9): 1966- 2005.
doi: 10.1016/j.rser.2006.03.013
23 LILLO-RODENAS M , CAZORLA-AMOROS D , LINARES-SOLANO A . Understanding chemical reactions between carbons and NaOH and KOH:an insight into the chemical activation mechanism[J]. Carbon, 2003, 41 (2): 267- 275.
doi: 10.1016/S0008-6223(02)00279-8
24 陈进富, 李兴存, 李术元. 石油焦活化机理的研究[J]. 燃料化学学报, 2004, 32 (1): 54- 58.
24 CHEN J F , LI X C , LI S Y . Research on the activation mechanism of petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2004, 32 (1): 54- 58.
25 张凡, 陈龙, 黄必胜, 等. 应用X射线衍射及拉曼光谱鉴别白石英的研究[J]. 中国实验方剂学杂志, 2015, (19): 42- 47.
25 ZHANG F , CHEN L , HUANG B S , et al. Identification of quartz album by XRD and Raman spectrometry[J]. Chinese Journal of Hospital Pharmacy, 2015, (19): 42- 47.
26 樊丽华, 王晓柳, 侯彩霞, 等. 灰分对活性炭结构及性能的影响[J]. 碳素技术, 2017, 36 (3): 4- 8.
26 FAN L H , WANG X L , HOU C X , et al. The effects of ash on the structure and properties of activated carbons[J]. Carbon Techniques, 2017, 36 (3): 4- 8.
27 QU D , SHI H . Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74 (1): 99- 107.
doi: 10.1016/S0378-7753(98)00038-X
[1] 马锐, 张宇雨, 王菲菲, 刘琪瑶, 李嘉琪, 魏金枝. Ni-BTC/RGO复合材料的制备及其电化学性能[J]. 材料工程, 2022, 50(6): 124-130.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[4] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[5] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[6] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[7] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[8] 曾静, 武东政, 庄奕超, 赵金保. 镁电池正极材料性能提升策略的研究进展[J]. 材料工程, 2021, 49(2): 10-20.
[9] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[10] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[11] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[12] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[13] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[14] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[15] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn