Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 12-18    DOI: 10.11868/j.issn.1001-4381.2017.001448
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
3D打印非晶合金材料工艺及性能的研究进展
章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升
华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
Research Progress on 3D Printed Metallic Glasses Materials, Processing and Property
ZHANG Yuan-jie, ZHANG Jin-liang, ZHANG Lei, LI Ning, SONG Bo, SHI Yu-sheng
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1772 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了3D打印制备非晶合金材料工艺及性能的研究进展,介绍了激光选区熔化和激光立体成形两种研究较多的3D打印制备非晶合金的方法,重点讨论了成形过程中工艺优化、基体预热、双激光熔化对成形非晶合金中晶态及微裂纹的影响。分析3D打印技术现有缺陷如球化、孔隙,指出今后的研究中可采用重熔、退火、粉体基体预热、改变扫描方式等手段提升性能,以期制备出致密度高、无裂纹、无晶化且性能优异的块体非晶合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章媛洁
张金良
张磊
李宁
宋波
史玉升
关键词 激光选区熔化非晶合金微裂纹晶化    
Abstract:Materials, processing and property of metallic glasses by 3D printing were reviewed. Two common 3D printing methods-selective laser melting and laser solid forming were introduced. The effect of process optimization, substrate preheating and re-scanning strategy on crystallization and micro-cracks was discussed. It was pointed out the balling and pore defects and elimination methods such as re-scan, anneal, preheating of powder and substrate and scan strategy can be applied to improve the properties of metallic glasses. The metallic glasses with high relative density, crack-free and fully amorphous alloy are expected to be prepared.
Key wordsselective laser melting    metallic glass    micro-crack    crystallization
收稿日期: 2017-11-25      出版日期: 2018-07-20
中图分类号:  TG139  
通讯作者: 宋波(1984-),男,博士,副教授,主要从事增材制造(3D打印)技术方面的研究,联系地址:湖北省武汉市珞瑜路1037号华中科技大学防伪中心(430074),E-mail:songbo42002@163.com     E-mail: songbo42002@163.com
引用本文:   
章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
ZHANG Yuan-jie, ZHANG Jin-liang, ZHANG Lei, LI Ning, SONG Bo, SHI Yu-sheng. Research Progress on 3D Printed Metallic Glasses Materials, Processing and Property. Journal of Materials Engineering, 2018, 46(7): 12-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001448      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/12
[1] 何圣静, 高莉如. 非晶态材料及其应用[M]. 北京:机械工业出版社, 1987:61. HE S J, GAO L R. Amorphous alloy and its application[M]. Beijing:China Machine Press, 1987:61.
[2] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版.上海:上海交通大学出版社, 2010:382-389. HU G X, CAI X, RONG Y H. Fundamentals of materials science[M].3rd ed. Shanghai:Shanghai Jiao Tong University Press, 2010:382-389.
[3] 吴树森, 柳玉起. 材料成型原理[M].2版. 北京:机械工业出版社, 2008:127. WU S S, LIU Y Q. Principles of material forming[M]. 2nd ed.Beijing:China Machine Press, 2008:127.
[4] JOHNSON W L. Bulk glass-forming metallic alloys:science and technology[J]. MRS Bulletin, 1999, 24(10):42-56.
[5] 范亮, 刘丹敏, 张久兴. 大块非晶的性能及其制备技术[J]. 功能材料, 2007, 38(增刊):4051-4054. FAN L, LIU D M, ZHANG J X. The property and preparation of bulk metallic glassy alloy[J]. Journal of Functional Materials, 2007, 38(Suppl):4051-4054.
[6] KRUTH J P, FROYEN L, Van VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/3):616-622.
[7] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2):122-128. ZHANG X J, TANG S Y, ZHAO H Y, et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44(2):122-128.
[8] 王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4):89-98. WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36(4):89-98.
[9] GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3):133-164.
[10] 王黎. 选择性激光熔化成形金属零件性能研究[D]. 武汉:华中科技大学, 2013. WANG L. Research on the performance in selective laser melting of metallic part[D]. Wuhan:Huazhong University of Science and Technology, 2013.
[11] AUDEBERT F, COLACO R, VILAR R, et al. Production of glassy metallic layers by laser surface treatment[J]. Scripta Materialia, 2003, 48(3):281-286.
[12] PAULY S, LÖBER L, PETTERS R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1/2):37-41.
[13] JUNG H Y, CHOI S J, PRASHANTH K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting:a parameter study[J]. Materials & Design, 2015, 86:703-708.
[14] LI X P, KANG C W, HUANG H, et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass:processing, microstru-cture evolution and mechanical properties[J]. Materials Science and Engineering:A, 2014,606:370-379.
[15] LI X P, ROBERTS M, LIU Y J, et al. Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al-Ni-Y-Co-La metallic glass[J]. Materials & Design, 2015, 65:1-6.
[16] LI X P, ROBERTS M P, O'KEEFFE S, et al. Selective laser melting of Zr-based bulk metallic glasses:processing, microstructure and mechanical properties[J]. Materials & Design, 2016, 112:217-226.
[17] GUO S F, CHAN K C, CHEN Q, et al. Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region[J]. Scripta Materialia, 2009, 60(6):369-372.
[18] HUSSEIN A, HAO L, YAN C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013,52:638-647.
[19] LI X P, KANG C W, HUANG H, et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting[J]. Materials & Design, 2014, 63:407-411.
[20] ZHANG Y Y, LIN X, WANG L L, et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66:22-30.
[21] ZHANG Y Y, LIN X, WEI L, et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55 Cu30Al10Ni5 bulk amorphous alloy[J]. Intermetallics, 2016, 76:1-9.
[22] GU D D, SHEN Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1):163-166.
[23] GU D D, SHEN Y F. Balling phenomena in direct laser sintering of stainless steel powder:metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8):2903-2910.
[24] SONG B, DONG S J, DENG S H, et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56:451-460.
[25] CHILDS T H C, HAUSER C, BADROSSAMAY M. Mapping and modelling single scan track formation in direct metal selective laser melting[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):191-194.
[26] CHILDS T H C, HAUSER C, BADROSSAMAY M. Selective laser sintering (melting) of stainless and tool steel powders:experiments and modelling[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2005, 219(4):339-357.
[27] TOLOCHKO N K, MOZZHAROV S E, YADROITSEV I A, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10(2):78-87.
[28] 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉:华中科技大学, 2010. LI R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan:Huazhong University of Science and Technology, 2010.
[29] TOLOSA I, GARCIANDÍA F, ZUBIRI F, et al. Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5/8):639-647.
[30] LAMIKIZ A, SANCHEZ J A, ARANA J L. Laser polishing of parts built up by selective laser sintering[J]. International Journal of Machine Tools & Manufacture, 2007, 47(12):2040-2050.
[31] XU W L, YUE T M, MAN H C, et al. Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance[J]. Surface and Coatings Technology, 2006, 200(16/17):5077-5086.
[32] SHIOMI M, OSAKADA K, NAKAMURA K, et al. Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):195-198.
[33] YASA E, KRUTH J P, DECKERS J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):263-266.
[34] YASA E, KRUTH J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19:389-395.
[35] KRAKHMALEV P, YADROITSAVA I, FREDRIKSSON G, et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels[J]. Materials & Design, 2015, 87:380-385.
[36] SONG B, DONG S J, LIAO H L, et al. Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting[J]. Materials Research Innovations, 2012, 16(5):321-325.
[37] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I, et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213(4):606-613.
[38] LIU Q, DANLOS Y, SONG B, et al. Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic[J]. Journal of Materials Processing Technology, 2015, 222:61-74.
[39] MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672):365-369.
[40] 付立定. 不锈钢粉末选择性激光熔化直接制造金属零件研究[D]. 武汉:华中科技大学, 2008. FU L D. Investigation into manufacturing metal parts direct from stainless steel powder via selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2008.
[41] QIAN B, SHI Y S, WEI Q S, et al. The helix scan strategy applied to the selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2012, 63(5/8):631-640.
[42] LU Y J, WU S Q, GAN Y L, et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy[J]. Optics & Laser Technology, 2015, 75:197-206.
[1] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[2] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[3] 山圣峰, 田晓生, 于涛, 贾元智, 马明臻. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46(7): 88-93.
[4] 李春燕, 尹金锋, 王铮, 寇生中, 赵燕春. Er对ZrCuNiAl非晶合金结构、力学性能、热稳定性及非晶形成能力的影响[J]. 材料工程, 2018, 46(1): 1-7.
[5] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[6] 金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
[7] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[8] 王国材, 肖小波, 陈艳萍, 王晨. Ce68Al10Cu20Nb2大块非晶表面钝化膜的研究[J]. 材料工程, 2016, 44(5): 72-78.
[9] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
[10] 刘繁茂, 张慧燕, 张涛. Fe-Nd-B-Zr块体非晶合金的形成能力和磁性能[J]. 材料工程, 2014, 0(10): 6-10.
[11] 方敏杰, 任会兰, 宁建国. 准脆性材料中椭圆形微裂纹的生长与演化[J]. 材料工程, 2013, (2): 35-39.
[12] 张志彬, 梁秀兵, 陈永雄, 徐滨士. 热喷涂工艺制备铝基非晶态合金材料研究进展[J]. 材料工程, 2012, 0(2): 86-90.
[13] 沙桂英, 刘翠云, 刘腾, 孙晓光, 李根. 添加Y对Mg-3.5%Li合金冲击变形行为的影响[J]. 材料工程, 2010, 0(7): 64-67.
[14] 张雪峰, 李会容, 武昭妤. 快速热处理对BaSrTiO3薄膜微结构的影响[J]. 材料工程, 2009, 0(9): 16-19.
[15] 王华, 张云鹏, 孙博. 氢气气氛下SiC纤维的热稳定性[J]. 材料工程, 2009, 0(12): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn