Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (7): 12-18    DOI: 10.11868/j.issn.1001-4381.2017.001448
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
3D打印非晶合金材料工艺及性能的研究进展
章媛洁, 张金良, 张磊, 李宁, 宋波(), 史玉升
华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
Research Progress on 3D Printed Metallic Glasses Materials, Processing and Property
Yuan-jie ZHANG, Jin-liang ZHANG, Lei ZHANG, Ning LI, Bo SONG(), Yu-sheng SHI
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1772 KB)   HTML ( 20 )  
输出: BibTeX | EndNote (RIS)      
摘要 

综述了3D打印制备非晶合金材料工艺及性能的研究进展,介绍了激光选区熔化和激光立体成形两种研究较多的3D打印制备非晶合金的方法,重点讨论了成形过程中工艺优化、基体预热、双激光熔化对成形非晶合金中晶态及微裂纹的影响。分析3D打印技术现有缺陷如球化、孔隙,指出今后的研究中可采用重熔、退火、粉体基体预热、改变扫描方式等手段提升性能,以期制备出致密度高、无裂纹、无晶化且性能优异的块体非晶合金。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章媛洁
张金良
张磊
李宁
宋波
史玉升
关键词 激光选区熔化非晶合金微裂纹晶化    
Abstract

Materials, processing and property of metallic glasses by 3D printing were reviewed. Two common 3D printing methods-selective laser melting and laser solid forming were introduced. The effect of process optimization, substrate preheating and re-scanning strategy on crystallization and micro-cracks was discussed. It was pointed out the balling and pore defects and elimination methods such as re-scan, anneal, preheating of powder and substrate and scan strategy can be applied to improve the properties of metallic glasses. The metallic glasses with high relative density, crack-free and fully amorphous alloy are expected to be prepared.

Key wordsselective laser melting    metallic glass    micro-crack    crystallization
收稿日期: 2017-11-25      出版日期: 2018-07-20
中图分类号:  TG139  
基金资助:国家自然科学基金项目(51531003)
通讯作者: 宋波     E-mail: songbo42002@163.com
作者简介: 宋波(1984-), 男, 博士, 副教授, 主要从事增材制造(3D打印)技术方面的研究, 联系地址:湖北省武汉市珞瑜路1037号华中科技大学防伪中心(430074), E-mail:songbo42002@163.com
引用本文:   
章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
Yuan-jie ZHANG, Jin-liang ZHANG, Lei ZHANG, Ning LI, Bo SONG, Yu-sheng SHI. Research Progress on 3D Printed Metallic Glasses Materials, Processing and Property. Journal of Materials Engineering, 2018, 46(7): 12-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001448      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/12
Fig.1  铁基非晶三维支架结构[12]
Fig.2  Al85Ni5Y6Co2Fe2非晶齿轮图片[19]
Fig.3  SLM成形中球化机制示意图[28]
Fig.4  各种扫描方式示意图
(a)分组变向;(b)分块变向; (c)跳转变向; (d)内外螺旋[40]
1 何圣静, 高莉如. 非晶态材料及其应用[M]. 北京: 机械工业出版社, 1987: 61.
1 HE S J , GAO L R . Amorphous alloy and its application[M]. Beijing: China Machine Press, 1987: 61.
2 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版 上海: 上海交通大学出版社, 2010: 382- 389.
2 HU G X , CAI X , RONG Y H . Fundamentals of materials science[M]. 3rd ed Shanghai: Shanghai Jiao Tong University Press, 2010: 382- 389.
3 吴树森, 柳玉起. 材料成型原理[M]. 2版 北京: 机械工业出版社, 2008: 127.
3 WU S S , LIU Y Q . Principles of material forming[M]. 2nd ed Beijing: China Machine Press, 2008: 127.
4 JOHNSON W L . Bulk glass-forming metallic alloys:science and technology[J]. MRS Bulletin, 1999, 24 (10): 42- 56.
doi: 10.1557/S0883769400053252
5 范亮, 刘丹敏, 张久兴. 大块非晶的性能及其制备技术[J]. 功能材料, 2007, 38 (增刊): 4051- 4054.
5 FAN L , LIU D M , ZHANG J X . The property and preparation of bulk metallic glassy alloy[J]. Journal of Functional Materials, 2007, 38 (Suppl): 4051- 4054.
6 KRUTH J P , FROYEN L , Van VAERENBERGH J , et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149 (1/3): 616- 622.
7 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
7 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
8 王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36 (4): 89- 98.
8 WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
9 GU D D , MEINERS W , WISSENBACH K , et al. Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57 (3): 133- 164.
doi: 10.1179/1743280411Y.0000000014
10 王黎. 选择性激光熔化成形金属零件性能研究[D]. 武汉: 华中科技大学, 2013.
10 WANG L. Research on the performance in selective laser melting of metallic part[D]. Wuhan: Huazhong University of Science and Technology, 2013.
11 AUDEBERT F , COLACO R , VILAR R , et al. Production of glassy metallic layers by laser surface treatment[J]. Scripta Materialia, 2003, 48 (3): 281- 286.
doi: 10.1016/S1359-6462(02)00382-2
12 PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
13 JUNG H Y , CHOI S J , PRASHANTH K G , et al. Fabrication of Fe-based bulk metallic glass by selective laser melting:a parameter study[J]. Materials & Design, 2015, 86, 703- 708.
14 LI X P , KANG C W , HUANG H , et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass:processing, microstru-cture evolution and mechanical properties[J]. Materials Science and Engineering:A, 2014, 606, 370- 379.
doi: 10.1016/j.msea.2014.03.097
15 LI X P , ROBERTS M , LIU Y J , et al. Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al-Ni-Y-Co-La metallic glass[J]. Materials & Design, 2015, 65, 1- 6.
16 LI X P , ROBERTS M P , O'KEEFFE S , et al. Selective laser melting of Zr-based bulk metallic glasses:processing, microstructure and mechanical properties[J]. Materials & Design, 2016, 112, 217- 226.
17 GUO S F , CHAN K C , CHEN Q , et al. Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region[J]. Scripta Materialia, 2009, 60 (6): 369- 372.
doi: 10.1016/j.scriptamat.2008.11.006
18 HUSSEIN A , HAO L , YAN C , et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013, 52, 638- 647.
19 LI X P , KANG C W , HUANG H , et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting[J]. Materials & Design, 2014, 63, 407- 411.
20 ZHANG Y Y , LIN X , WANG L L , et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66, 22- 30.
doi: 10.1016/j.intermet.2015.06.007
21 ZHANG Y Y , LIN X , WEI L , et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55 Cu30Al10Ni5 bulk amorphous alloy[J]. Intermetallics, 2016, 76, 1- 9.
doi: 10.1016/j.intermet.2016.06.006
22 GU D D , SHEN Y F . Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432 (1): 163- 166.
23 GU D D , SHEN Y F . Balling phenomena in direct laser sintering of stainless steel powder:metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30 (8): 2903- 2910.
24 SONG B , DONG S J , DENG S H , et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56, 451- 460.
25 CHILDS T H C , HAUSER C , BADROSSAMAY M . Mapping and modelling single scan track formation in direct metal selective laser melting[J]. CIRP Annals-Manufacturing Technology, 2004, 53 (1): 191- 194.
doi: 10.1016/S0007-8506(07)60676-3
26 CHILDS T H C , HAUSER C , BADROSSAMAY M . Selective laser sintering (melting) of stainless and tool steel powders:experiments and modelling[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2005, 219 (4): 339- 357.
doi: 10.1243/095440505X8109
27 TOLOCHKO N K , MOZZHAROV S E , YADROITSEV I A , et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10 (2): 78- 87.
doi: 10.1108/13552540410526953
28 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉: 华中科技大学, 2010.
28 LI R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan: Huazhong University of Science and Technology, 2010.
29 TOLOSA I , GARCIANDÍA F , ZUBIRI F , et al. Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies[J]. International Journal of Advanced Manufacturing Technology, 2010, 51 (5/8): 639- 647.
30 LAMIKIZ A , SANCHEZ J A , ARANA J L . Laser polishing of parts built up by selective laser sintering[J]. International Journal of Machine Tools & Manufacture, 2007, 47 (12): 2040- 2050.
31 XU W L , YUE T M , MAN H C , et al. Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance[J]. Surface and Coatings Technology, 2006, 200 (16/17): 5077- 5086.
32 SHIOMI M , OSAKADA K , NAKAMURA K , et al. Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals-Manufacturing Technology, 2004, 53 (1): 195- 198.
doi: 10.1016/S0007-8506(07)60677-5
33 YASA E , KRUTH J P , DECKERS J . Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting[J]. CIRP Annals-Manufacturing Technology, 2011, 60 (1): 263- 266.
doi: 10.1016/j.cirp.2011.03.063
34 YASA E , KRUTH J P . Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19, 389- 395.
doi: 10.1016/j.proeng.2011.11.130
35 KRAKHMALEV P , YADROITSAVA I , FREDRIKSSON G , et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels[J]. Materials & Design, 2015, 87, 380- 385.
36 SONG B , DONG S J , LIAO H L , et al. Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting[J]. Materials Research Innovations, 2012, 16 (5): 321- 325.
doi: 10.1179/1433075X11Y.0000000045
37 YADROITSEV I , KRAKHMALEV P , YADROITSAVA I , et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213 (4): 606- 613.
doi: 10.1016/j.jmatprotec.2012.11.014
38 LIU Q , DANLOS Y , SONG B , et al. Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic[J]. Journal of Materials Processing Technology, 2015, 222, 61- 74.
doi: 10.1016/j.jmatprotec.2015.02.036
39 MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
40 付立定. 不锈钢粉末选择性激光熔化直接制造金属零件研究[D]. 武汉: 华中科技大学, 2008.
40 FU L D. Investigation into manufacturing metal parts direct from stainless steel powder via selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2008.
41 QIAN B , SHI Y S , WEI Q S , et al. The helix scan strategy applied to the selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2012, 63 (5/8): 631- 640.
42 LU Y J , WU S Q , GAN Y L , et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy[J]. Optics & Laser Technology, 2015, 75, 197- 206.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[3] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[4] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[5] 高祥熙, 杨平华, 乔海燕, 张帅. 基于μCT表征的SLM成形GH3536高温合金缺陷特征[J]. 材料工程, 2022, 50(10): 63-72.
[6] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7××× 系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
[7] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[8] 杨鑫, 王犇, 谷文萍, 张兆洋, 刘世锋, 武涛. 金属激光3D打印过程数值模拟应用及研究现状[J]. 材料工程, 2021, 49(4): 52-62.
[9] 张舒研, 高洋洋, 张志彬, 梁秀兵, 王立忠. 高熵非晶合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(1): 44-54.
[10] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[11] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[12] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[13] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[14] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[15] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn