Materials, processing and property of metallic glasses by 3D printing were reviewed. Two common 3D printing methods-selective laser melting and laser solid forming were introduced. The effect of process optimization, substrate preheating and re-scanning strategy on crystallization and micro-cracks was discussed. It was pointed out the balling and pore defects and elimination methods such as re-scan, anneal, preheating of powder and substrate and scan strategy can be applied to improve the properties of metallic glasses. The metallic glasses with high relative density, crack-free and fully amorphous alloy are expected to be prepared.
FAN L , LIU D M , ZHANG J X . The property and preparation of bulk metallic glassy alloy[J]. Journal of Functional Materials, 2007, 38 (Suppl): 4051- 4054.
6
KRUTH J P , FROYEN L , Van VAERENBERGH J , et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149 (1/3): 616- 622.
ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
doi: 10.11868/j.issn.1001-4381.2016.02.019
WANG Y Q , SHEN J X , WU H Q . Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36 (4): 89- 98.
9
GU D D , MEINERS W , WISSENBACH K , et al. Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57 (3): 133- 164.
doi: 10.1179/1743280411Y.0000000014
10
王黎. 选择性激光熔化成形金属零件性能研究[D]. 武汉: 华中科技大学, 2013.
10
WANG L. Research on the performance in selective laser melting of metallic part[D]. Wuhan: Huazhong University of Science and Technology, 2013.
11
AUDEBERT F , COLACO R , VILAR R , et al. Production of glassy metallic layers by laser surface treatment[J]. Scripta Materialia, 2003, 48 (3): 281- 286.
doi: 10.1016/S1359-6462(02)00382-2
12
PAULY S , LÖBER L , PETTERS R , et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16 (1/2): 37- 41.
13
JUNG H Y , CHOI S J , PRASHANTH K G , et al. Fabrication of Fe-based bulk metallic glass by selective laser melting:a parameter study[J]. Materials & Design, 2015, 86, 703- 708.
14
LI X P , KANG C W , HUANG H , et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass:processing, microstru-cture evolution and mechanical properties[J]. Materials Science and Engineering:A, 2014, 606, 370- 379.
doi: 10.1016/j.msea.2014.03.097
15
LI X P , ROBERTS M , LIU Y J , et al. Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al-Ni-Y-Co-La metallic glass[J]. Materials & Design, 2015, 65, 1- 6.
16
LI X P , ROBERTS M P , O'KEEFFE S , et al. Selective laser melting of Zr-based bulk metallic glasses:processing, microstructure and mechanical properties[J]. Materials & Design, 2016, 112, 217- 226.
17
GUO S F , CHAN K C , CHEN Q , et al. Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region[J]. Scripta Materialia, 2009, 60 (6): 369- 372.
doi: 10.1016/j.scriptamat.2008.11.006
18
HUSSEIN A , HAO L , YAN C , et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 2013, 52, 638- 647.
19
LI X P , KANG C W , HUANG H , et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting[J]. Materials & Design, 2014, 63, 407- 411.
20
ZHANG Y Y , LIN X , WANG L L , et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66, 22- 30.
doi: 10.1016/j.intermet.2015.06.007
21
ZHANG Y Y , LIN X , WEI L , et al. Influence of powder size on the crystallization behavior during laser solid forming Zr55 Cu30Al10Ni5 bulk amorphous alloy[J]. Intermetallics, 2016, 76, 1- 9.
doi: 10.1016/j.intermet.2016.06.006
22
GU D D , SHEN Y F . Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432 (1): 163- 166.
23
GU D D , SHEN Y F . Balling phenomena in direct laser sintering of stainless steel powder:metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30 (8): 2903- 2910.
24
SONG B , DONG S J , DENG S H , et al. Microstructure and tensile properties of iron parts fabricated by selective laser melting[J]. Optics & Laser Technology, 2014, 56, 451- 460.
25
CHILDS T H C , HAUSER C , BADROSSAMAY M . Mapping and modelling single scan track formation in direct metal selective laser melting[J]. CIRP Annals-Manufacturing Technology, 2004, 53 (1): 191- 194.
doi: 10.1016/S0007-8506(07)60676-3
26
CHILDS T H C , HAUSER C , BADROSSAMAY M . Selective laser sintering (melting) of stainless and tool steel powders:experiments and modelling[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2005, 219 (4): 339- 357.
doi: 10.1243/095440505X8109
27
TOLOCHKO N K , MOZZHAROV S E , YADROITSEV I A , et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10 (2): 78- 87.
doi: 10.1108/13552540410526953
28
李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉: 华中科技大学, 2010.
28
LI R D. Research on the key basic issues in selective laser melting of metallic powder[D]. Wuhan: Huazhong University of Science and Technology, 2010.
29
TOLOSA I , GARCIANDÍA F , ZUBIRI F , et al. Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies[J]. International Journal of Advanced Manufacturing Technology, 2010, 51 (5/8): 639- 647.
30
LAMIKIZ A , SANCHEZ J A , ARANA J L . Laser polishing of parts built up by selective laser sintering[J]. International Journal of Machine Tools & Manufacture, 2007, 47 (12): 2040- 2050.
31
XU W L , YUE T M , MAN H C , et al. Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance[J]. Surface and Coatings Technology, 2006, 200 (16/17): 5077- 5086.
32
SHIOMI M , OSAKADA K , NAKAMURA K , et al. Residual stress within metallic model made by selective laser melting process[J]. CIRP Annals-Manufacturing Technology, 2004, 53 (1): 195- 198.
doi: 10.1016/S0007-8506(07)60677-5
33
YASA E , KRUTH J P , DECKERS J . Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting[J]. CIRP Annals-Manufacturing Technology, 2011, 60 (1): 263- 266.
doi: 10.1016/j.cirp.2011.03.063
34
YASA E , KRUTH J P . Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19, 389- 395.
doi: 10.1016/j.proeng.2011.11.130
35
KRAKHMALEV P , YADROITSAVA I , FREDRIKSSON G , et al. In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels[J]. Materials & Design, 2015, 87, 380- 385.
36
SONG B , DONG S J , LIAO H L , et al. Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting[J]. Materials Research Innovations, 2012, 16 (5): 321- 325.
doi: 10.1179/1433075X11Y.0000000045
37
YADROITSEV I , KRAKHMALEV P , YADROITSAVA I , et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 2013, 213 (4): 606- 613.
doi: 10.1016/j.jmatprotec.2012.11.014
38
LIU Q , DANLOS Y , SONG B , et al. Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic[J]. Journal of Materials Processing Technology, 2015, 222, 61- 74.
doi: 10.1016/j.jmatprotec.2015.02.036
39
MARTIN J H , YAHATA B D , HUNDLEY J M , et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549 (7672): 365- 369.
doi: 10.1038/nature23894
40
付立定. 不锈钢粉末选择性激光熔化直接制造金属零件研究[D]. 武汉: 华中科技大学, 2008.
40
FU L D. Investigation into manufacturing metal parts direct from stainless steel powder via selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2008.
41
QIAN B , SHI Y S , WEI Q S , et al. The helix scan strategy applied to the selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2012, 63 (5/8): 631- 640.
42
LU Y J , WU S Q , GAN Y L , et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy[J]. Optics & Laser Technology, 2015, 75, 197- 206.