Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (7): 88-93    DOI: 10.11868/j.issn.1001-4381.2017.001622
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能
山圣峰1,*(), 田晓生2, 于涛2, 贾元智2, 马明臻2
1 济宁学院 物理与信息工程系, 山东 曲阜 273155
2 燕山大学 亚稳材料制备技术与科学国家重点实验室, 河北 秦皇岛 066004
Nano-crystallization and Mechanical Properties of Y Addition Ti40Zr25Cu9Ni8Be18 Amorphous Alloy
Sheng-feng SHAN1,*(), Xiao-sheng TIAN2, Tao YU2, Yuan-zhi JIA2, Ming-zhen MA2
1 Department of Physics and Information Engineering, Jining College, Qufu 273155, Shandong, China
2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China
全文: PDF(2879 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用铜模铸造法制备直径为3mm的(Ti40Zr25Cu9Ni8Be18100-xYxx=0,1.0,1.5,2.0,3.0)合金棒材,采用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、差式扫描量热计(DSC)和单轴压缩测试设备对合金的组织、玻璃形成能力和力学性能进行研究。结果表明:Y元素含量为1.0%(原子分数,下同)时,合金的衍射结果为非晶态;Y元素含量为1.5%时,诱发了非晶合金的纳米晶化。在高分辨透射电镜下可观察到,非晶基体上析出5~20nm左右的晶化相,含Y为1.5%的合金抗压强度高达1990MPa,塑性应变高达3.0%;Y添加后合金断口处剪切带数量增加。多剪切带之间的交错,阻碍不均匀形变,提高了合金的塑性和强度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
山圣峰
田晓生
于涛
贾元智
马明臻
关键词 Ti基非晶合金Y添加力学性能纳米晶化    
Abstract

(Ti40Zr25Cu9Ni8Be18)100-xYx (x=0, 1.0, 1.5, 2.0, 3.0) alloy rods with 3mm in diameter were fabricated by copper mold casting method. The microstructures, nano-crystallization and mechanical properties of the alloys were investigated by X-ray diffractometry(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), differential scanning colorimetry(DSC) and uniaxial compressive test.The results show that with 1.0%(atom fraction, the same below) addition of Y, the alloy presents amorphous nature by X-ray examination, with 1.5% of Y addition, nano-crystallization of the amorphous alloy is induced. Crystalline phases with the size of 5-20nm can be observed distributed in the amorphous matrix by high resolution transmission electron microscopy. The alloy with 1.5% of Y addition presents the fracture strength of 1990MPa, at the plastic strain of 3% upon uniaxial compressive test. The number of shear bands is increased in the fracture surfaces of the alloys with Y addition. The interference of shear bands hinders inhomogeneous deformation, increases the fracture strength and plasticity of the alloy.

Key wordsTi-based amorphous alloy    Y addition    mechanical property    nano-crystallization
收稿日期: 2017-12-20      出版日期: 2018-07-20
中图分类号:  TG139+.8  
基金资助:国家自然科学基金(51471143);国家自然科学基金(51671166);国家自然科学基金(51434008);河北省教育厅青年基金(QN2014156)
通讯作者: 山圣峰     E-mail: sdjnssf@163.com
作者简介: 山圣峰(1969-), 男, 副教授, 博士, 研究方向:钛基非晶合金的制备及性能, 联系地址:山东曲阜市杏坛路1号济宁学院物理与信息工程系(273155), E-mail:sdjnssf@163.com
引用本文:   
山圣峰, 田晓生, 于涛, 贾元智, 马明臻. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46(7): 88-93.
Sheng-feng SHAN, Xiao-sheng TIAN, Tao YU, Yuan-zhi JIA, Ming-zhen MA. Nano-crystallization and Mechanical Properties of Y Addition Ti40Zr25Cu9Ni8Be18 Amorphous Alloy. Journal of Materials Engineering, 2018, 46(7): 88-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001622      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/88
Fig.1  (Ti40Zr25Cu9Ni8Be18)100-xYx(x=0,1.0,1.5,2.0,3.0)合金的XRD图谱
Fig.2  (Ti40Zr25Cu9Ni8Be18)100-xYx(x=0,1.0,1.5,2.0,3.0)合金的DSC曲线
xTg/
K
Tx/
K
T1/
K
ΔTx/
K
Trgγ
06156581004430.670.39
1.05926251001330.590.39
1.5594627972330.610.40
2.0596631995350.600.40
3.0594628972340.610.40
Table 1  (Ti40Zr25Cu9Ni8Be18)100-xYx(x=0,1.0,1.5,2.0,3.0)非晶合金的热性能
Fig.3  (Ti40Zr25Cu9Ni8Be18)100Y0(a), (Ti40Zr25Cu9Ni8Be18)99Y1(b), (Ti40Zr25Cu9Ni8Be18)98.5Y1.5(c), (Ti40Zr25Cu9Ni8Be18)98Y2.0(d)和(Ti40Zr25Cu9Ni8Be18)97Y3.0(e)非晶合金的压缩应力-应变曲线
x(Y)/%σy/MPaσ/MPaεp/%Elongation/%
x=0177318962.15.1
x=1.0174018701.14.0
x=1.5187619903.05.5
x=2.0180718190.13.0
x=3.0-1753-3.0
Table 2  (Ti40Zr25Cu9Ni8Be18)100-xYx(x=0, 1.0, 1.5, 2.0, 3.0)非晶合金的压缩力学性能参数
Fig.4  (Ti40Zr25Cu9Ni8Be18)99Y1(a)及(Ti40Zr25Cu9Ni8Be18)98.5Y1.5合金(b)的HRTEM照片及衍射花样
Fig.5  (Ti40Zr25Cu9Ni8Be18)99Y1(a),(Ti40Zr25Cu9Ni8Be18)98.5Y1.5(b)及(Ti40Zr25Cu9Ni8Be18)98Y2(c)非晶合金断口SEM照片
Fig.6  (Ti40Zr25Cu9Ni8Be18)98Y2的TEM照片
1 PEKER A , JOHNSON W L . A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl Phys Lett, 1993, 63 (17): 2342- 2344.
doi: 10.1063/1.110520
2 INOUE A , ZHANG T , NISHIYAMA N . Preparation of 16mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Mater Trans, 1993, 34 (12): 1234- 1237.
doi: 10.2320/matertrans1989.34.1234
3 INOUE A , NISHIYAMA N , KIMURA H . Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72mm in diameter[J]. Mater Trans, 1997, 38 (2): 179- 183.
doi: 10.2320/matertrans1989.38.179
4 KIM Y C , KIM W T , KIM D H . A development of Ti-based bulk metallic glass[J]. Mater Sci Eng:A, 2004, 375/377, 127- 135.
doi: 10.1016/j.msea.2003.10.115
5 贾元智, 魏尊杰, 马明臻, 等. 添加微量铜对FeCoNbSiB合金非晶形成能力及磁性的影响[J]. 航空材料学报, 2007, 27 (6): 30- 34.
5 JIA Y Z , WEI Z J , MA M Z , et al. Effect of copper minor addition on glass forming ability and soft magnetic properties of FeCoNbSiB alloy[J]. Journal of Aeronautical Materials, 2007, 27 (6): 30- 34.
6 HE Y , PRICE C E , POON S J . Formation of bulk metallic glasses in neodymium-based alloys[J]. Phil Mag Lett, 1994, 70, 371- 377.
doi: 10.1080/09500839408240503
7 YIM H C , XU D , JOHNSON W L . Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X=B, Fe, Cu) alloy systems[J]. Appl Phys Lett, 2003, 82, 1030- 1032.
doi: 10.1063/1.1544434
8 李萍, 李丽, 谭家隆, 等. Cu-Zr-Al系Cu基非晶合金弹性性能与团簇结构的相关性[J]. 材料工程, 2009, (2): 15- 18.
8 LI P , LI L , TAN J L , et al. The relativity between elastic moduli and cluster structure of Cu-based bulk metallic glasses in Cu-Zr-Al system[J]. Journal of Materials Engineering, 2009, (2): 15- 18.
9 DEBNATH M R , CHANG H J , FLEURY E . Effect of group 5 elements on the formation and corrosion behavior of Ti-based BMG matrix composites reinforced by icosahedral quasicrystalline phase[J]. J Alloy Compd, 2014, 612, 134- 142.
doi: 10.1016/j.jallcom.2014.05.049
10 LI C B , CHEN D H , CHEN W W , et al. Corrosion behavior of TiZrNiCuBe metallic glass coatings synthesized by electrospark deposition[J]. Corros Sci, 2014, 84, 96- 102.
doi: 10.1016/j.corsci.2014.03.017
11 梁维中. NiTiZrAlCuSi合金的玻璃形成能力及断裂行为[D]. 哈尔滨: 哈尔滨工业大学, 2007.
11 LIANG W Z. Glass-forming ability and fracture behavior of NiTiZrAlCuSi alloys[D]. Harbin: Harbin Institute of Technology, 2007.
12 JIANG J Z , HOFMANN D , JARVIS D J , et al. Low-density high-strength bulk metallic glasses and their composites:a review[J]. Adv Eng Mater, 2015, 17, 761- 780.
doi: 10.1002/adem.v17.6
13 WANG P G , SHAO X , CHEN Y , et al. A Ti-Zr-Be-Fe-Cu bulk metallic glass with superior glass-forming ability and high specific strength[J]. Intermetallics, 2013, 43, 177- 181.
doi: 10.1016/j.intermet.2013.08.003
14 张婧, 马朝利, 张涛. 塑性Zr-Cu-Fe-Al-Y非晶合金及其力学性能[J]. 稀有金属材料与工程, 2008, 37, 691- 694.
doi: 10.3321/j.issn:1002-185X.2008.z2.181
14 ZHANG J , MA C L , ZHANG T . Mechanical properties of Zr-Cu-Fe-Al-Y amorphous alloys[J]. Rare Metal Materials and Engineering, 2008, 37, 691- 694.
doi: 10.3321/j.issn:1002-185X.2008.z2.181
15 山圣峰. Ti基大块非晶合金的制备及性能研究[D]. 秦皇岛: 燕山大学, 2010.
15 SHAN S F. Formation and properties of Ti-based bulk metallic glass[D]. Qinhuangdao: Yanshan University, 2010.
16 李超. 钛基块体非晶复合材料组织及力学性能的研究[M]. 兰州: 兰州理工大学, 2013.
16 LI C . The research on microstructure and mechanical properties of Ti-based bulk amorphous composites[M]. Lanzhou: Lanzhou University of Technology, 2013.
17 CHEN M W , ZHAND T , INOUE A . Quasicrystals in a partially devitrified Zr-Al-Ni-Cu-Ag bulk metallic glass[J]. Appl Phys Lett, 1999, 75, 1697- 1701.
doi: 10.1063/1.124793
18 谢春晓, 钟守炎, 杨元政, 等. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, (8): 46- 50.
doi: 10.11868/j.issn.1001-4381.2016.08.008
18 XIE C X , ZHONG S Y , YANG Y Z , et al. Effect of heat treatment on microstructure and soft magnetic properties of (Fe0.52Co0.30Ni0.18)73Cr17Zr10 amorphous alloy[J]. Journal of Materials Engineering, 2016, (8): 46- 50.
doi: 10.11868/j.issn.1001-4381.2016.08.008
19 PARK E S , KIM D H . Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses[J]. Acta Mater, 2006, 54, 2597- 2660.
doi: 10.1016/j.actamat.2005.12.020
20 YAN M , SHEN J , ZHANG T , et al. Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping[J]. J Non-cryst Solids, 2006, 352 (28/29): 3109- 3112.
21 ZHANG Y , CHEN J , CHEN G L , et al. Glass formation mechanism of minor yttrium addition in CuZrAl alloys[J]. Appl Phys Lett, 2006, 89, 131904- 131906.
doi: 10.1063/1.2357160
22 HAYS C C , KIM C P . Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions[J]. Mater Sci Eng:A, 2001, 304/306, 650- 655.
doi: 10.1016/S0921-5093(00)01557-4
23 索忠源, 宋艳玲, 王鑫, 等. Co元素对Ti-Zr-Be-Cu块体非晶合金力学性能的影响[J]. 特种铸造及有色合金, 2015, (2): 18- 20.
23 SUO Z Y , SONG Y L , WANG X , et al. Effect of Co addition on mechanical properties of the Ti-Zr-Be-Cu bulk amorphous alloys[J]. Special Casting and Nonferrous Alloys, 2015, (2): 18- 20.
24 PARK J M , PARK J S , NA J H , et al. Effect of Y addition on thermal stability and the glass forming ability in Fe-Nb-B-Si bulk glassy alloy[J]. Mater Sci Eng:A, 2006, 435/436, 425- 428.
doi: 10.1016/j.msea.2006.07.073
25 LU Z P , LIU C T , PORTER W D . Role of yttrium in glass formation of Fe-based bulk metallic glasses[J]. Appl Phys Lett, 2003, 83, 2581- 2583.
doi: 10.1063/1.1614833
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn