Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (7): 19-28    DOI: 10.11868/j.issn.1001-4381.2018.000084
  3D打印技术专栏 本期目录 | 过刊浏览 | 高级检索 |
陶瓷3D打印技术及材料研究进展
纪宏超1,2, 张雪静1, 裴未迟1,3, 李耀刚1, 郑镭1,4, 叶晓濛1, 陆永浩2
1. 华北理工大学 机械工程学院, 河北 唐山 063210;
2. 北京科技大学 国家材料服役安全科学中心, 北京 100083;
3. 北京科技大学 机械工程学院, 北京 100083;
4. 河北农业大学 机电工程学院, 河北 保定 071001
Research Progress in Ceramic 3D Printing Technology and Material Development
JI Hong-chao1,2, ZHANG Xue-jing1, PEI Wei-chi1,3, LI Yao-gang1, ZHENG Lei1,4, YE Xiao-meng1, LU Yong-hao2
1. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China;
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
3. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, Hebei, China
全文: PDF(2025 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了陶瓷3D打印技术和材料的特性及其研究进展与应用现状,重点讨论了喷墨打印技术、熔化沉积成型技术、光固化成型技术、分层实体制造技术、激光选区熔化技术/激光选区烧结技术、三维打印成型技术、浆料直写成型技术的特性和研究进展,分析了磷酸三钙陶瓷、氧化铝陶瓷、陶瓷先驱体、SiC陶瓷、Si3N4陶瓷、碳硅化钛陶瓷的特性和应用现状,最后指出了陶瓷3D打印技术的发展方向是与传统陶瓷工艺相结合,实现陶瓷制品的快速生产及生物陶瓷制品、高性能陶瓷功能零件的制造。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪宏超
张雪静
裴未迟
李耀刚
郑镭
叶晓濛
陆永浩
关键词 3D打印增材制造陶瓷材料陶瓷先驱体    
Abstract:The research progress and application status of ceramic 3D printing technology, and its materials characteristics were reviewed. The characteristics and research progress of inkjet printing technology, melt deposition molding technology, photocuring molding technology, layered entity manufacturing technology, laser selection melting technology/laser selective sintering technology, three-dimensional printing technology, and slurry write-through molding technology were discussed. The characteristics and application status of tricalcium phosphate ceramics, alumina ceramics, ceramic precursor, SiC ceramics, Si3N4 ceramics, and titanium silicon carbide ceramics were analyzed. It was pointed out that the development direction of ceramic 3D printing technology is combined with traditional ceramic technology to realize the rapid production of ceramic products and the manufacture of bio-ceramic products and high-performance ceramic functional parts.
Key words3D printing    additive manufacturing    ceramic material    ceramic precursor
收稿日期: 2018-01-22      出版日期: 2018-07-20
中图分类号:  TQ174  
通讯作者: 裴未迟(1975-),男,博士,副教授,研究方向:增材制造,联系地址:河北省唐山市曹妃甸区华北理工大学机械工程学院(063210),E-mail:pwc@ncst.edu.cn     E-mail: pwc@ncst.edu.cn
引用本文:   
纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
JI Hong-chao, ZHANG Xue-jing, PEI Wei-chi, LI Yao-gang, ZHENG Lei, YE Xiao-meng, LU Yong-hao. Research Progress in Ceramic 3D Printing Technology and Material Development. Journal of Materials Engineering, 2018, 46(7): 19-28.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000084      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/19
[1] HOU X, HU Y, GRINTHAL A, et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behavior[J]. Nature, 2015, 519(7541):70-73.
[2] MATTEO P, MASSILIMIANO V, CLAUDIO B. Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites[J]. Journal of the European Ceramic Society, 2007, 27(1):131-141.
[3] GRIFFITH M L, HALLROAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2010, 79(10):2601-2608.
[4] WINDSHIMER H, TRAVITZKY N, HOFENAUER A, et al. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites[J]. Advanced Materials, 2007, 19(24):4515-4519.
[5] BLAZDELL P. Solid free-forming of ceramics using a continuous jet printer[J]. Journal of Materials Processing Technology, 2003, 137(1/3):49-54.
[6] OZKOL E, EBERT J, UIBEL K, et al. Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer[J]. Journal of the European Ceramic Society, 2009, 29(3):403-409.
[7] CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9(1):4.
[8] VAN N R. The future of dental devices is digital.[J]. Dental Materials, 2012, 28(1):3-12.
[9] 刘斌, 谢毅. 熔融沉积快速成型系统喷头应用现状分析[J]. 工程塑料应用, 2008, 36(12):68-71. LIU B, XIE Y. Analysis on application status for the spray head of fused deposition modeling system[J]. Engineering Plastics Application, 2008, 36(12):68-71.
[10] McNULTY T F, SHANEFIELD D J, DANFORTH S C, et al. Dispersion of lead zirconate titanate for fused deposition of ceramics[J]. Journal of the American Ceramic Society, 2010, 82(7):1757-1760.
[11] GOYANES A, CHANG H, SEDOUGH D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing[J]. International Journal of Pharmaceutics, 2015, 496(2):414-420.
[12] GRIFFITH M L, HALLORAN J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996,79(10):2601-2608.
[13] BERTSCH A, JIQUET S, RENAUD P. Microfabrication of ceramic components by microstereolithography[J]. Journal of Micromechanics & Microengineering, 2004, 14(2):197-203.
[14] HALLORAN J W, GRIFFITH M, CHU T M. Stereolithography resin for rapid prototyping of ceramics and metals:US 6117612[P]. 2000-09-12.
[15] STANSBURY J W, IDACAVAGE M J. 3D printing with polymers:challenges among expanding options and opportunities[J]. Dental Materials, 2016, 32(1):54-64.
[16] 黄淼俊, 伍海东, 黄容基,等. 陶瓷增材制造(3D打印)技术研究进展[J]. 现代技术陶瓷, 2017,38(4):248-266. HUANG M J, WU H D, HUANG R J, et al. A review on ceramic additive manufacturing (3D printing)[J]. Advanced Ceramics, 2017, 38(4):248-266.
[17] FARSARI M, HUANG S, BIRCH P, et al. Microfabrication by use of a spatial light modulator in the ultraviolet:experimental results[J]. Optics Letters, 1999, 24(8):549-550.
[18] LU Y, MAPILI G, SUHALI G, et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds[J]. Journal of Biomedical Materials Research Part A, 2006, 77(2):396-405.
[19] BERTSCH A, BERNHARD P, VOGT C, et al. Rapid prototyping of small size objects[J]. Rapid Prototyping Journal, 2000, 6(4):259-266.
[20] SUN C, FANG N, WU D M, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors & Actuators A:Physical, 2005, 121(1):113-120.
[21] CHABOK H, ZHOU C, CHEN Y, et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites[C]//ASME/ISCIE 2012 International Symposium on Flexible Automation. St Louis, USA:American Society of Mechanical Engineers, 2012:433-444.
[22] DENDUKURI D, PREGIBON D C, COLLINS J, et al. Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5(5):365-369.
[23] SPOATH S, SEITZ H. Influence of grain size and grain-size distribution on workability of granules with 3D printing[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(1/4):135-144.
[24] 杨万莉, 王秀峰, 江红涛,等. 基于快速成型技术的陶瓷零件无模制造[J]. 材料导报, 2006, 20(12):92-95. YANG W L, WANG X F, JIANG H T, et al. Freeform fabrication of ceramics parts based on rapid prototyping technology[J]. Materials Review, 2006, 20(12):92-95.
[25] 贲玥, 张乐, 魏帅, 等. 3D打印陶瓷材料研究进展[J]. 材料导报, 2016, 30(21):109-118. BI Y, ZHANG L, WEI S, et al. Research progress of 3D printed ceramic materials[J]. Materials Review, 2016, 30(21):109-118.
[26] GANERIWALA R, ZOHDI T I. A coupled discrete element-finite difference model of selective laser sintering[J]. Granular Matter, 2016, 18(2):21-36.
[27] WILKES J, HAGEDORN Y, MEINERS W, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19(1):51-57.
[28] FINA F, GOYANES A, GAISFORD S, et al. Selective laser sintering (SLS) 3D printing of medicines[J]. International Journal of Pharmaceutics, 2017, 529(1):258-293.
[29] 吴琼, 陈惠, 巫静,等. 选择性激光烧结用原材料的研究进展[J]. 材料导报, 2015,29(26):78-83. WU Q, CHEN H, WU J, et al. Research development of the material used for selective laser sintering[J]. Materials Review, 2015,29(26):78-83.
[30] ONUH S O, YUSUF Y Y. Rapid prototyping technology:applications and benefits for rapid product development[J]. Journal of Intelligent Manufacturing, 1999, 10(3/4):301-311.
[31] UTELA B, STORTI D, ANDERSON R, et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10(2):96-104.
[32] CESARANO J, SEGALMAN R, CALVERT P. Robocasting provides moldless fabrication from slurry deposition[J]. Ceramic Industry, 1998,148(4):94-102.
[33] LEWIS J. Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State & Materials Science, 2002, 6(3):245-250.
[34] LEWIS J A. Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83(10):2341-2359.
[35] GUO J J, LEWIS J A. Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions[J]. Journal of the American Ceramic Society, 1999, 82(9):2345-2358.
[36] SUN J B, LI B, HUANG X G, et al. Direct-write assembly of ceramic three-dimensional structures based on photosensitive inks[J]. Journal of Inorganic Materials, 2009, 24(6):1147-1150.
[37] 李亚运, 司云晖, 熊信柏,等. 陶瓷3D打印技术的研究与进展[J]. 硅酸盐学报, 2017, 45(6):793-805. LI Y Y, SI Y H, XIONG X B, et al. Research and progress on three dimensional printing of ceramic materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(6):793-805.
[38] 夏雪. 浅谈我国3D打印陶瓷材料及产业化发展[J]. 陶瓷, 2017(5):9-12. XIA X. Introduction to 3D printing ceramic materials and industrialiazation development in China[J]. Ceramics, 2017(5):9-12.
[39] SHAO H F, HE Y, FU J Z, et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36(6):1495-1503.
[40] OVERMAN J R, FARREGUASCH E, HELDER M N, et al. Short (15 minutes) bone morphogenetic protein-2 treatment stimulates osteogenic differentiation of human adipose stem cells seeded on calcium phosphate scaffolds in vitro[J]. Tissue Engineering Part A, 2013, 19(4):571-581.
[41] BOHNER M. Design of ceramic-based cements and putties for bone graft substitution[J]. European Cells & Materials, 2010, 20(7):1-12.
[42] SARⅡBRAHIMOGLU K, WOLKE J G C, LEEUWENBURGH S C G, et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute[J]. Key Engineering Materials, 2013, 529/530(11):157-160.
[43] SUGAWARA A, ASAOKA K, DING S J. Calcium phosphate-based cements:clinical needs and recent progress[J]. Journal of Materials Chemistry B, 2013, 1(8):1081-1089.
[44] 袁景, 甄平, 赵红斌. 高性能多孔β-磷酸三钙骨组织工程支架的3D打印[J]. 中国组织工程研究, 2014, 18(43):6914-6921. YUAN J, ZHEN P, ZHAO H B. High-performance porous beta-tricalcium phosphate bone tissue engineering scaffolds using 3D printing[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2014, 18(43):6914-6921.
[45] 3D打印生物陶瓷用于骨、软骨修复研究获系列进展[J]. 化工新型材料, 2017(8):279. 3D printing bioceramics for bone and cartilage repair research a series of progress[J]. New Chemical Materials, 2017(8):279.
[46] BOSE S, VAHABZADEH S, BANDYOPADHYAY A. Bone tissue engineering using 3D printing[J]. Materials Today, 2013, 16(12):496-504.
[47] TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering & Regenerative Medicine, 2013, 7(8):631-641.
[48] VORNDRAN E, KLARNER M, KLAMMERT U, et al. 3D powder printing of β-tricalcium phosphate ceramics using different strategies[J]. Advanced Engineering Materials, 2008, 10(12):B67-B71.
[49] DETSCH R, SCHEAFER S, DEISINGER U, et al. In vitro:osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds[J]. Journal of Biomaterials Applications, 2011, 26(3):359-380.
[50] KLAMMERT U, GBURECK U, VORNDRAN E, et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects[J]. Journal of Cranio-Maxillofacial Surgery, 2010, 38(8):565-570.
[51] FIELDING G A, BANDYOPADHYAY A, BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28(2):113-122.
[52] GBURECK U, HOLZEL T, DOILLON C, et al. Direct printing of bioceramic implants with spatially localized angiogenic factors[J]. Advanced Materials, 2007, 19(6):795-800.
[53] HABIBOVIC P, GBURECK U C, BASSETT D, et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants[J]. Biomaterials, 2008, 29(7):944-953.
[54] 张小锋, 于国强, 姜林文. 氧化铝陶瓷的应用[J]. 佛山陶瓷, 2010, 20(2):38-43. ZHANG X F, YU G Q, JIANG L W. Application of alumina ceramic[J]. Foshan Ceramics, 2010, 20(2):38-43.
[55] ZHOU M, LIU W, WU H, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-optimization of the drying and debinding processes[J]. Ceramics International, 2016, 42(10):11598-11602.
[56] 唐城城, 俞海燕, 乔梁,等. 选择性激光烧结用Al2O3/PA12复合材料的制备和成型[J]. 塑料工业, 2015, 43(2):130-135. TANG C C, YU H Y, QIAO L, et al. Preparation and molding of Al2O3/PA12 composite used in selective laser sintering[J]. China Plastics Industry, 2015, 43(2):130-135.
[57] MELCHER R, MARTINS S, TRAVITZKY N, et al. Fabrication of Al2O3-based composites by indirect 3D-printing[J]. Materials Letters, 2006, 60(4):572-575.
[58] WILKES J, HAGEDORN Y, MEINERS W, et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19(1):51-57.
[59] YAJIMA S, HAYASHI J, OMORI M, et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261(5562):683-685.
[60] SCHULZ M, BORNER M, GOTTERT J, et al. Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation[J]. Advanced Engineering Materials, 2004, 6(8):676-680.
[61] 王超, 朱冬梅, 周万城,等. 填料辅助先驱体转化法制备陶瓷基复合材料的研究进展[J]. 材料导报, 2014, 28(17):145-150. WANG C, ZHU D M, ZHOU W C, et al. Research progress in ceramic matrix composites fabrication via filler-assisted precursor infiltration and pyrolysis method[J]. Materials Review, 2014, 28(17):145-150.
[62] 陈朝辉, 谢征芳. 活性填料在制备陶瓷基复合材料中的应用[J]. 材料研究学报, 2000, 14(1):56-60. CHEN Z H, XIE Z F. Ceramic matrix composite derived by active filler-controlled-precursor-pyrolysis[J]. Chinese Journal of Materials Research, 2000, 14(1):56-60.
[63] 谢征芳, 陈朝辉, 李永清,等. 活性填料铝在聚碳硅烷裂解陶瓷中的应用[J]. 硅酸盐学报, 2000, 28(3):240-244. XIE Z F, CHEN Z H, LI Y Q, et al. Application of aluminium in the preparation of polycarbosilane derived ceramics[J]. Journal of the Chinese Ceramic Society, 2000, 28(3):240-244.
[64] ECKEL Z C, ZHOU C, MARTIN J H, et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351(6268):58-62.
[65] 熊亮萍, 许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007, 19(4):567-574. XIONG L P,XU Y S. Application of preceramic polymers[J]. Progress in Chemistry, 2007, 19(4):567-574.
[66] 史毅敏, 罗发, 丁冬海,等. 预氧化聚碳硅烷先驱体转化法制备SiC陶瓷介电和吸波性能研究[J]. 功能材料, 2017, 48(2):2153-2157. SHI Y M, LUO F, DING D H, et al. Dielectric and microwave absorption properties of SiC ceramics derived from pre-oxidized polycarbosilane precursor[J]. Journal of Functional Materials, 2017, 48(2):2153-2157.
[67] PIVIN J C, COLOMBO P. Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes:part Ⅰ conversion mechanism[J]. Journal of Materials Science, 1997, 32(23):6163-6173.
[68] 简科, 郑文伟, 马青松,等. 聚碳硅烷/聚硅氮烷先驱体体系的交联[J]. 有机硅材料, 2003, 17(2):5-7. JIAN K, ZHENG W W, MA Q S, et al. Study on crosslinking of polycarbosilane/polysilazane precursor system[J]. Silicone Material, 2003, 17(2):5-7.
[69] 陈曼华, 陈朝辉, 尚安. 陶瓷先驱体聚硅氮烷的铂催化交联[J]. 功能高分子学报, 2003, 16(3):383-386. CHEN M H, CHEN Z H, SHANG A. Cross-linking of polysilazane as precursor catalysed by H2[PtCl6xH2O[J]. Journal of Functional Polymers, 2003, 16(3):383-386.
[70] POLZIN C, GUNTHER, SEITZ H. 3D printing of porous Al2O3 and SiC ceramics[J]. Journal of Ceramic Science & Technology, 2015, 6(2):141-146.
[71] CAPPI B, OZKOL E, EBERT J, et al. Direct inkjet printing of Si3N4:characterization of ink,green bodies and microstructure[J]. Journal of the European Ceramic Society, 2008, 28(13):2625-2628.
[72] 邓先功, 王军凯, 杜爽,等. 发泡法、三维打印法、熔盐法制备多孔陶瓷[J]. 材料导报, 2015, 29(9):109-116. DENG X G, WANG J K, DU S, et al. Fabricating porous ceramics through direct foaming, three-dimensional printing and molten salt method[J]. Materials Review, 2015, 29(9):109-116.
[73] LI X M, ZHANG L T, YIN X W. Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3D printing and pressureless sintering[J]. Scripta Materialia, 2012, 67(4):380-383.
[74] TRAVITZKY N, BONET A, DERMEIK B, et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16(6):729-754.
[75] SUN W, DCOSTA D J, LIN F, et al. Freeform fabrication of Ti3SiC2, powder-based structures:part Ⅰ-integrated fabrication process[J]. Journal of Materials Processing Technology, 2002, 127(3):343-351.
[76] 连芩, 武向权, 田小永,等. 陶瓷增材制造[J]. 现代技术陶瓷, 2017,38(4):267-277. LIAN Q, WU X Q, TIAN X Y, et al. Additive manufacturing of ceramics[J]. Advanced Ceramics, 2017,38(4):267-277.
[1] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[2] 许婧, 邢悦, 郝思嘉, 任志东, 杨程. 石墨烯/聚合物基复合材料3D打印成型研究进展[J]. 材料工程, 2018, 46(7): 1-11.
[3] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[4] 郭龙龙, 贺雨田, 鞠录岩, 吴泽兵, 张勇, 吕澜涛, 王文娟. 脉冲TIG增材制造技术研究进展[J]. 材料工程, 2018, 46(12): 10-17.
[5] 杨平华, 高祥熙, 梁菁, 史亦韦, 徐娜. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9): 13-21.
[6] 黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
[7] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
[8] 张学军, 唐思熠, 肇恒跃, 郭绍庆, 李能, 孙兵兵, 陈冰清. 特约3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(2): 122-128.
[9] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[10] 王家梁, 马德军, 白盟亮, 黄勇, 孙亮. 传统压痕法识别陶瓷材料断裂韧性的有效性研究[J]. 材料工程, 2015, 43(12): 81-88.
[11] 王家梁, 马德军, 陈伟, 黄勇, 白盟亮. 陶瓷材料维氏压痕形貌仿真与实验分析[J]. 材料工程, 2015, 43(11): 71-76.
[12] 徐秀国, 许崇海, 方斌, 王春林, 衣明东. TiB2/WC/h-BN自润滑陶瓷材料的制备及力学性能[J]. 材料工程, 2014, 0(4): 63-67.
[13] 曹同坤, 高伟. Al2O3/TiC/CaF2陶瓷的摩擦磨损及自润滑膜的形成机理研究[J]. 材料工程, 2009, 0(9): 75-79.
[14] 任会兰, 宁建国, 王颖. 陶瓷材料破坏的声发射特性[J]. 材料工程, 2009, 0(2): 54-57.
[15] 曹同坤, 邓建新, 孙军龙. Al2O3/TiC/CaF2自润滑陶瓷材料的研究[J]. 材料工程, 2005, 0(3): 37-39,42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn