1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China 2 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 3 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China 4 College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, Hebei, China
The research progress and application status of ceramic 3D printing technology, and its materials characteristics were reviewed. The characteristics and research progress of inkjet printing technology, melt deposition molding technology, photocuring molding technology, layered entity manufacturing technology, laser selection melting technology/laser selective sintering technology, three-dimensional printing technology, and slurry write-through molding technology were discussed. The characteristics and application status of tricalcium phosphate ceramics, alumina ceramics, ceramic precursor, SiC ceramics, Si3N4 ceramics, and titanium silicon carbide ceramics were analyzed. It was pointed out that the development direction of ceramic 3D printing technology is combined with traditional ceramic technology to realize the rapid production of ceramic products and the manufacture of bio-ceramic products and high-performance ceramic functional parts.
纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
Hong-chao JI, Xue-jing ZHANG, Wei-chi PEI, Yao-gang LI, Lei ZHENG, Xiao-meng YE, Yong-hao LU. Research Progress in Ceramic 3D Printing Technology and Material Development. Journal of Materials Engineering, 2018, 46(7): 19-28.
HOU X , HU Y , GRINTHAL A , et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behavior[J]. Nature, 2015, 519 (7541): 70- 73.
doi: 10.1038/nature14253
2
MATTEO P , MASSILIMIANO V , CLAUDIO B . Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites[J]. Journal of the European Ceramic Society, 2007, 27 (1): 131- 141.
doi: 10.1016/j.jeurceramsoc.2006.05.080
3
GRIFFITH M L , HALLROAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2010, 79 (10): 2601- 2608.
4
WINDSHIMER H , TRAVITZKY N , HOFENAUER A , et al. Laminated object manufacturing of preceramic-paper-derived Si-SiC composites[J]. Advanced Materials, 2007, 19 (24): 4515- 4519.
doi: 10.1002/(ISSN)1521-4095
5
BLAZDELL P . Solid free-forming of ceramics using a continuous jet printer[J]. Journal of Materials Processing Technology, 2003, 137 (1/3): 49- 54.
6
OZKOL E , EBERT J , UIBEL K , et al. Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer[J]. Journal of the European Ceramic Society, 2009, 29 (3): 403- 409.
doi: 10.1016/j.jeurceramsoc.2008.06.020
7
CHIA H N , WU B M . Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9 (1): 4.
doi: 10.1186/s13036-015-0001-4
8
VAN N R . The future of dental devices is digital[J]. Dental Materials, 2012, 28 (1): 3- 12.
doi: 10.1016/j.dental.2011.10.014
LIU B , XIE Y . Analysis on application status for the spray head of fused deposition modeling system[J]. Engineering Plastics Application, 2008, 36 (12): 68- 71.
doi: 10.3969/j.issn.1001-3539.2008.12.019
10
McNULTY T F , SHANEFIELD D J , DANFORTH S C , et al. Dispersion of lead zirconate titanate for fused deposition of ceramics[J]. Journal of the American Ceramic Society, 2010, 82 (7): 1757- 1760.
11
GOYANES A , CHANG H , SEDOUGH D , et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing[J]. International Journal of Pharmaceutics, 2015, 496 (2): 414- 420.
doi: 10.1016/j.ijpharm.2015.10.039
12
GRIFFITH M L , HALLORAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79 (10): 2601- 2608.
13
BERTSCH A , JIQUET S , RENAUD P . Microfabrication of ceramic components by microstereolithography[J]. Journal of Micromechanics & Microengineering, 2004, 14 (2): 197- 203.
14
HALLORAN J W, GRIFFITH M, CHU T M. Stereolithography resin for rapid prototyping of ceramics and metals: US 6117612[P]. 2000-09-12.
15
STANSBURY J W , IDACAVAGE M J . 3D printing with polymers:challenges among expanding options and opportunities[J]. Dental Materials, 2016, 32 (1): 54- 64.
doi: 10.1016/j.dental.2015.09.018
HUANG M J , WU H D , HUANG R J , et al. A review on ceramic additive manufacturing (3D printing)[J]. Advanced Ceramics, 2017, 38 (4): 248- 266.
17
FARSARI M , HUANG S , BIRCH P , et al. Microfabrication by use of a spatial light modulator in the ultraviolet:experimental results[J]. Optics Letters, 1999, 24 (8): 549- 550.
doi: 10.1364/OL.24.000549
18
LU Y , MAPILI G , SUHALI G , et al. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds[J]. Journal of Biomedical Materials Research Part A, 2006, 77 (2): 396- 405.
19
BERTSCH A , BERNHARD P , VOGT C , et al. Rapid prototyping of small size objects[J]. Rapid Prototyping Journal, 2000, 6 (4): 259- 266.
doi: 10.1108/13552540010373362
20
SUN C , FANG N , WU D M , et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors & Actuators A:Physical, 2005, 121 (1): 113- 120.
21
CHABOK H, ZHOU C, CHEN Y, et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites[C]//ASME/ISCIE 2012 International Symposium on Flexible Automation. St Louis, USA: American Society of Mechanical Engineers, 2012: 433-444.
22
DENDUKURI D , PREGIBON D C , COLLINS J , et al. Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5 (5): 365- 369.
doi: 10.1038/nmat1617
23
SPOATH S , SEITZ H . Influence of grain size and grain-size distribution on workability of granules with 3D printing[J]. International Journal of Advanced Manufacturing Technology, 2014, 70 (1/4): 135- 144.
YANG W L , WANG X F , JIANG H T , et al. Freeform fabrication of ceramics parts based on rapid prototyping technology[J]. Materials Review, 2006, 20 (12): 92- 95.
doi: 10.3321/j.issn:1005-023X.2006.12.024
BI Y , ZHANG L , WEI S , et al. Research progress of 3D printed ceramic materials[J]. Materials Review, 2016, 30 (21): 109- 118.
26
GANERIWALA R , ZOHDI T I . A coupled discrete element-finite difference model of selective laser sintering[J]. Granular Matter, 2016, 18 (2): 21- 36.
doi: 10.1007/s10035-016-0626-0
27
WILKES J , HAGEDORN Y , MEINERS W , et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19 (1): 51- 57.
28
FINA F , GOYANES A , GAISFORD S , et al. Selective laser sintering (SLS) 3D printing of medicines[J]. International Journal of Pharmaceutics, 2017, 529 (1): 258- 293.
WU Q , CHEN H , WU J , et al. Research development of the material used for selective laser sintering[J]. Materials Review, 2015, 29 (26): 78- 83.
30
ONUH S O , YUSUF Y Y . Rapid prototyping technology:applications and benefits for rapid product development[J]. Journal of Intelligent Manufacturing, 1999, 10 (3/4): 301- 311.
doi: 10.1023/A:1008956126775
31
UTELA B , STORTI D , ANDERSON R , et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes, 2008, 10 (2): 96- 104.
doi: 10.1016/j.jmapro.2009.03.002
32
CESARANO J , SEGALMAN R , CALVERT P . Robocasting provides moldless fabrication from slurry deposition[J]. Ceramic Industry, 1998, 148 (4): 94- 102.
33
LEWIS J . Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State & Materials Science, 2002, 6 (3): 245- 250.
34
LEWIS J A . Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341- 2359.
35
GUO J J , LEWIS J A . Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions[J]. Journal of the American Ceramic Society, 1999, 82 (9): 2345- 2358.
doi: 10.1111/j.1151-2916.1999.tb02090.x
36
SUN J B , LI B , HUANG X G , et al. Direct-write assembly of ceramic three-dimensional structures based on photosensitive inks[J]. Journal of Inorganic Materials, 2009, 24 (6): 1147- 1150.
doi: 10.3724/SP.J.1077.2009.01147
LI Y Y , SI Y H , XIONG X B , et al. Research and progress on three dimensional printing of ceramic materials[J]. Journal of the Chinese Ceramic Society, 2017, 45 (6): 793- 805.
38
夏雪. 浅谈我国3D打印陶瓷材料及产业化发展[J]. 陶瓷, 2017, (5): 9- 12.
38
XIA X . Introduction to 3D printing ceramic materials and industrialiazation development in China[J]. Ceramics, 2017, (5): 9- 12.
39
SHAO H F , HE Y , FU J Z , et al. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1495- 1503.
doi: 10.1016/j.jeurceramsoc.2016.01.010
40
OVERMAN J R , FARREGUASCH E , HELDER M N , et al. Short (15 minutes) bone morphogenetic protein-2 treatment stimulates osteogenic differentiation of human adipose stem cells seeded on calcium phosphate scaffolds in vitro[J]. Tissue Engineering Part A, 2013, 19 (4): 571- 581.
41
BOHNER M . Design of ceramic-based cements and putties for bone graft substitution[J]. European Cells & Materials, 2010, 20 (7): 1- 12.
42
SARIIBRAHIMOGLU K , WOLKE J G C , LEEUWENBURGH S C G , et al. Characterization of α/β-TCP based injectable calcium phosphate cement as a potential bone substitute[J]. Key Engineering Materials, 2013, 529/530 (11): 157- 160.
43
SUGAWARA A , ASAOKA K , DING S J . Calcium phosphate-based cements:clinical needs and recent progress[J]. Journal of Materials Chemistry B, 2013, 1 (8): 1081- 1089.
doi: 10.1039/C2TB00061J
YUAN J , ZHEN P , ZHAO H B . High-performance porous beta-tricalcium phosphate bone tissue engineering scaffolds using 3D printing[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2014, 18 (43): 6914- 6921.
doi: 10.3969/j.issn.2095-4344.2014.43.005
45
3D打印生物陶瓷用于骨、软骨修复研究获系列进展[J]. 化工新型材料, 2017(8): 279.
45
3D printing bioceramics for bone and cartilage repair research a series of progress[J]. New Chemical Materials, 2017(8): 279.
46
BOSE S , VAHABZADEH S , BANDYOPADHYAY A . Bone tissue engineering using 3D printing[J]. Materials Today, 2013, 16 (12): 496- 504.
doi: 10.1016/j.mattod.2013.11.017
47
TARAFDER S , BALLA V K , DAVIES N M , et al. Microwave sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. Journal of Tissue Engineering & Regenerative Medicine, 2013, 7 (8): 631- 641.
48
VORNDRAN E , KLARNER M , KLAMMERT U , et al. 3D powder printing of β-tricalcium phosphate ceramics using different strategies[J]. Advanced Engineering Materials, 2008, 10 (12): B67- B71.
doi: 10.1002/adem.v10:12
49
DETSCH R , SCHEAFER S , DEISINGER U , et al. In vitro:osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds[J]. Journal of Biomaterials Applications, 2011, 26 (3): 359- 380.
doi: 10.1177/0885328210373285
50
KLAMMERT U , GBURECK U , VORNDRAN E , et al. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects[J]. Journal of Cranio-Maxillofacial Surgery, 2010, 38 (8): 565- 570.
doi: 10.1016/j.jcms.2010.01.009
51
FIELDING G A , BANDYOPADHYAY A , BOSE S . Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials, 2012, 28 (2): 113- 122.
doi: 10.1016/j.dental.2011.09.010
52
GBURECK U , HOLZEL T , DOILLON C , et al. Direct printing of bioceramic implants with spatially localized angiogenic factors[J]. Advanced Materials, 2007, 19 (6): 795- 800.
doi: 10.1002/(ISSN)1521-4095
53
HABIBOVIC P , GBURECK U C , BASSETT D , et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants[J]. Biomaterials, 2008, 29 (7): 944- 953.
doi: 10.1016/j.biomaterials.2007.10.023
ZHANG X F , YU G Q , JIANG L W . Application of alumina ceramic[J]. Foshan Ceramics, 2010, 20 (2): 38- 43.
55
ZHOU M , LIU W , WU H , et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-optimization of the drying and debinding processes[J]. Ceramics International, 2016, 42 (10): 11598- 11602.
doi: 10.1016/j.ceramint.2016.04.050
TANG C C , YU H Y , QIAO L , et al. Preparation and molding of Al2O3/PA12 composite used in selective laser sintering[J]. China Plastics Industry, 2015, 43 (2): 130- 135.
57
MELCHER R , MARTINS S , TRAVITZKY N , et al. Fabrication of Al2O3-based composites by indirect 3D-printing[J]. Materials Letters, 2006, 60 (4): 572- 575.
doi: 10.1016/j.matlet.2005.09.059
58
WILKES J , HAGEDORN Y , MEINERS W , et al. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting[J]. Rapid Prototyping Journal, 2013, 19 (1): 51- 57.
doi: 10.1108/13552541311292736
59
YAJIMA S , HAYASHI J , OMORI M , et al. Development of a silicon carbide fibre with high tensile strength[J]. Nature, 1976, 261 (5562): 683- 685.
doi: 10.1038/261683a0
60
SCHULZ M , BORNER M , GOTTERT J , et al. Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation[J]. Advanced Engineering Materials, 2004, 6 (8): 676- 680.
doi: 10.1002/(ISSN)1527-2648
WANG C , ZHU D M , ZHOU W C , et al. Research progress in ceramic matrix composites fabrication via filler-assisted precursor infiltration and pyrolysis method[J]. Materials Review, 2014, 28 (17): 145- 150.
CHEN Z H , XIE Z F . Ceramic matrix composite derived by active filler-controlled-precursor-pyrolysis[J]. Chinese Journal of Materials Research, 2000, 14 (1): 56- 60.
XIE Z F , CHEN Z H , LI Y Q , et al. Application of aluminium in the preparation of polycarbosilane derived ceramics[J]. Journal of the Chinese Ceramic Society, 2000, 28 (3): 240- 244.
64
ECKEL Z C , ZHOU C , MARTIN J H , et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 2016, 351 (6268): 58- 62.
doi: 10.1126/science.aad2688
SHI Y M , LUO F , DING D H , et al. Dielectric and microwave absorption properties of SiC ceramics derived from pre-oxidized polycarbosilane precursor[J]. Journal of Functional Materials, 2017, 48 (2): 2153- 2157.
67
PIVIN J C , COLOMBO P . Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes:part Ⅰ conversion mechanism[J]. Journal of Materials Science, 1997, 32 (23): 6163- 6173.
doi: 10.1023/A:1018664406046
CHEN M H , CHEN Z H , SHANG A . Cross-linking of polysilazane as precursor catalysed by H2[PtCl6]·xH2O[J]. Journal of Functional Polymers, 2003, 16 (3): 383- 386.
70
POLZIN C , GUNTHER , SEITZ H . 3D printing of porous Al2O3 and SiC ceramics[J]. Journal of Ceramic Science & Technology, 2015, 6 (2): 141- 146.
71
CAPPI B , OZKOL E , EBERT J , et al. Direct inkjet printing of Si3N4:characterization of ink, green bodies and microstructure[J]. Journal of the European Ceramic Society, 2008, 28 (13): 2625- 2628.
doi: 10.1016/j.jeurceramsoc.2008.03.004
DENG X G , WANG J K , DU S , et al. Fabricating porous ceramics through direct foaming, three-dimensional printing and molten salt method[J]. Materials Review, 2015, 29 (9): 109- 116.
73
LI X M , ZHANG L T , YIN X W . Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3D printing and pressureless sintering[J]. Scripta Materialia, 2012, 67 (4): 380- 383.
doi: 10.1016/j.scriptamat.2012.05.030
74
TRAVITZKY N , BONET A , DERMEIK B , et al. Additive manufacturing of ceramic-based materials[J]. Advanced Engineering Materials, 2014, 16 (6): 729- 754.
doi: 10.1002/adem.201400097
75
SUN W , DCOSTA D J , LIN F , et al. Freeform fabrication of Ti3SiC2, powder-based structures:part Ⅰ-integrated fabrication process[J]. Journal of Materials Processing Technology, 2002, 127 (3): 343- 351.
doi: 10.1016/S0924-0136(02)00284-4