Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (12): 164-174    DOI: 10.11868/j.issn.1001-4381.2021.000180
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
3钉带衬套复合材料/金属接头拉伸疲劳性能
安子乾1, 舒茂盛2, 程羽佳1, 郭鑫1, 程小全1,*()
1 北京航空航天大学 航空科学与工程学院, 北京 100191
2 中国航空工业成都飞机设计研究所 强度部, 成都 610091
Tensile fatigue properties of composite/metal bolted joints with 3-pin and sleeves
Zi-qian AN1, Mao-sheng SHU2, Yu-jia CHENG1, Xin GUO1, Xiao-quan CHENG1,*()
1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
2 Department of Strength, AVIC Chengdu Aircraft Design & Research Institute, Chengdu 610091, China
全文: PDF(27248 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

带衬套沉头螺栓连接已经在复合材料连接结构中得到了一定应用,需要对其疲劳性能进行研究。本工作在单搭接3钉带衬套碳纤维复合材料/钛合金沉头螺栓连接接头实验研究基础上,建立复合材料及金属结构的疲劳分析模型,对结构的疲劳性能进行有限元分析,并与无衬套接头模型进行对比,研究衬套对接头疲劳性能的影响。结果表明,使用衬套比仅采用螺杆过盈装配能够更加有效地提升接头的疲劳寿命,其中层合板寿命提高了约3.6倍,钛合金板寿命提高了约2.7倍,螺栓寿命提升了约14倍,并且仅出现钛合金板破坏,紧固件不破坏。结合实验结果分析发现,由于复合材料和金属材料自身疲劳性能的差异,其机械连接结构的疲劳破坏模式会因载荷水平的不同而发生变化;当载荷水平较低时,金属结构更容易发生破坏。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安子乾
舒茂盛
程羽佳
郭鑫
程小全
关键词 复合材料/金属接头螺栓连接含衬套沉头螺栓拉伸疲劳渐进损伤模型    
Abstract

Countersunk bolt joints with sleeves have been used in composite connection structures, and their fatigue performances need to be studied. Based on the experimental investigation conducted on the single lap CFRP/titanium alloy bolted joint with 3-countersunk head bolt and sleeves, the fatigue models of composite laminates and metal structures were established to analyze the fatigue performances of the structure, and finite element analysis on joints without sleeves was also carried out to study the influences of the sleeves on fatigue performance of the joint. The results show that the use of sleeves can more effectively improve the fatigue performance of the joint compared to that only using interference fit. The fatigue life of laminate is increased by about 3.6 times, the titanium alloy plate increased by about 2.7 times, and the bolts are increased by about 14 times. Only the titanium alloy plate of the joint fails, but not the fastener. Combined with analysis on the experimental results, it is found that the fatigue failure mode of bolted joints structure will change with different load levels due to the different fatigue properties between composite materials and metal materials; and the metal structure is prone to be damaged under a certain load level.

Key wordscomposite/metal joint    bolted joint    countersunk bolt with sleeve    tensile fatigue perfor-mance    progressive damage model
收稿日期: 2021-03-01      出版日期: 2021-12-20
中图分类号:  V214.8  
通讯作者: 程小全     E-mail: xiaoquan_cheng@buaa.edu.cn
作者简介: 程小全(1966-),男,教授,博士,博士生导师,主要研究方向为复合材料结构损伤容限分析与设计技术研究,联系地址:北京市海淀区学院路37号北京航空航天大学飞机系(100191),E-mail:xiaoquan_cheng@buaa.edu.cn
引用本文:   
安子乾, 舒茂盛, 程羽佳, 郭鑫, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.
Zi-qian AN, Mao-sheng SHU, Yu-jia CHENG, Xin GUO, Xiao-quan CHENG. Tensile fatigue properties of composite/metal bolted joints with 3-pin and sleeves. Journal of Materials Engineering, 2021, 49(12): 164-174.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2021.000180      或      http://jme.biam.ac.cn/CN/Y2021/V49/I12/164
Fig.1  3钉连接实验件构型
(a)带衬套试件;(b)无衬套试件
Fig.2  实验中试件的夹持与加载状态
(a)静力实验; (b)疲劳实验
Type of test Specimen Amount Serial number
Static tensile test Joints with sleeves 3 TSLR1-TSLR3
Fatigue test Joints with sleeves 10 FTSLR1-FTSLR10
Joints without sleeves 12 FTR1-FTR12
Table 1  试件类型与数量
Failure mode Degradation scheme
Fiber tension failure E1=0.07E1
Fiber compression failure E1=0.14E1
Fiber-matrix shear-out failure G12=ν12=0
Matrix tension failure E2=0.2E2G12=0.2G12G23=0.2G23
Matrix compression failure E2=0.4E2G12=0.4G12G23=0.4G23
Interlaminar failure E3=G23=G13=ν13=ν23=0
Table 2  失效单元材料性能突降准则
Fig.3  有限元模型
Fig.4  复合材料层合板疲劳性能分析流程图
Exx/
GPa
Eyy/
GPa
Ezz/
GPa
G12/
GPa
G13/
GPa
G23/
GPa
ν12 ν13 ν23 XT/
MPa
XC/
MPa
YT/
MPa
YC/
MPa
S12/
MPa
S13/
MPa
S23/MPa
128 10.3 10.3 5.98 5.98 3.68 0.25 0.25 0.4 2391 1410 67.6 219 94.8 106 106
Table 3  T700/双马树脂单向板材料属性[14]
Type of load a2 b2 A B
Longitudinal tension 1.36 1.26×10-9 0.74 0.45
Longitudinal compression 0.71 6.41×10-10 0.74 0.45
Transverse tension 3.43 -9.30×10-9 0.74 -0.45
Transverse compression 9.77 -4.73×10-8 0.74 -0.45
In-plane shear 13.82 -1.91×10-7 0.27 0.27
Table 4  T800/5245单向板剩余强度衰减规律参数及疲劳寿命参数[9]
Fig.5  静力实验载荷-位移曲线及两类接头计算结果
Fig.6  静力拉伸实验破坏模式及计算结果对比
Test load/kN Simulation
load/kN
Relative
error/%
TSLR1 TSLR2 TSLR3 Average
62.99 68.93 63.07 65.00 63.64 -2.09
Table 5  条件挤压载荷实验值与计算结果对比
Test resultSimulation
result of
logarithmic life
Relative
error/%
Specimen Failure pattern Amount Average
load cycle
Logarithmic
life
Joint with sleeves Fracture of titanium plate through the hole 10 72267 4.86 4.92 1.23%
Joint without sleeves Fracture of titanium plate through the hole 5 46958 4.67 4.49 -3.85%
Fracture of the bolt 7 28893 4.46 4.61 3.36%
Table 6  实验结果与计算结果对比
Fig.7  疲劳破坏模式对比
(a)带衬套试件;(b)无衬套试件
Fig.8  夹头最大位移增量-疲劳循环数曲线
(a)带衬套试件;(b)无衬套试件
Fig.9  100000次循环载荷后层合板中不同角度铺层的纤维破坏扩展情况
Fig.10  100000次循环载荷后层合板中不同角度铺层的基体破坏扩展情况
Fig.11  孔径永久变形量对比
Fig.12  钛合金板孔边应变场对比
Failure
location
Joint without
sleeves
(transition fit)
Joint without
sleeves
(interference fit)
Joint with
sleeves
Titanium
alloy plate
4.49 4.67 4.92
Bolt 4.61 4.40 5.76
Table 7  金属结构对数寿命预测结果
Fig.13  R=0.1时T700/MTM46复合材料层合板及TC4钛合金S-N曲线对比
Fig.14  带衬套接头在100000次循环后孔边破坏情况
(a)基体破坏;(b)纤维破坏
1 郦正能, 程小全, 贾玉红, 等. 飞机部件与系统设计[M]. 2版 北京: 北京航空航天大学出版社, 2021: 129- 164.
2 陈坤, 舒茂盛, 胡仁伟, 等. 带衬套沉头螺栓复合材料/金属接头拉伸性能[J]. 北京航空航天大学学报, 2019, 45 (3): 633- 640.
2 CHEN K , SHU M S , HU R W , et al. Tensile performance of countersunk bolted composite/metal joints with sleeve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (3): 633- 640.
3 程小全, 杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报, 2021, 47 (7): 1311- 1322.
3 CHENG X Q , DU X Y . Development of fatigue life prediction and damage modeling of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (7): 1311- 1322.
4 SHOKRICH M M , LESSARD L B . Progressive fatigue damage modeling of composite materials, part Ⅰ: modeling[J]. Journal of Composite Materials, 2000, 34 (13): 1056- 1080.
doi: 10.1177/002199830003401301
5 SHOKRICH M M , LESSARD L B . Progressive fatigue damage modeling of composite materials, part Ⅱ: material characterization and model verification[J]. Journal of Composite Materials, 2000, 34 (13): 1081- 1116.
doi: 10.1177/002199830003401302
6 SHAN M J , ZHAO L B , LIU F R , et al. Revealing the competitive fatigue failure behavior of CFRP-aluminum two-bolt, double-lap joints[J]. Composite Structures, 2020, 244, 112166.
doi: 10.1016/j.compstruct.2020.112166
7 ZHAO L B , SHAN M J , HONG H M , et al. A residual strain model for progressive fatigue damage analysis of composite structures[J]. Composite Structures, 2017, 169, 69- 78.
doi: 10.1016/j.compstruct.2016.10.119
8 王丹勇. 层合板接头损伤失效与疲劳寿命研究[D]. 南京: 南京航空航天大学, 2006.
8 WANG D Y. Research on prediction of damage failure and fatigue life for composite bolted joints[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2006.
9 苏睿. 复合材料-钛合金机械连接结构疲劳寿命预测研究[D]. 上海: 上海交通大学, 2013.
9 SU R. Study on the life prediction of composite-to-titanium bolted joints[D]. Shanghai: Shanghai Jiaotong University, 2013.
10 GERENDT C , DEAN A , MAHRHOLZ T , et al. On the progressive fatigue failure of mechanical composite joints: numerical simulation and experimental validation[J]. Composite Structures, 2020, 248, 112488.
doi: 10.1016/j.compstruct.2020.112488
11 ZHOU S , SUN Y , GE J R , et al. Multiaxial fatigue life prediction of composite bolted joint under constant amplitude cycle loading[J]. Composites Part B, 2015, 74, 131- 137.
doi: 10.1016/j.compositesb.2015.01.013
12 刘建明, 万小朋, 赵美英. 层合板螺栓连接结构疲劳寿命预测[J]. 航空学报, 2015, 36 (6): 1867- 1875.
12 LIU J M , WAN X P , ZHAO M Y . Fatigue life prediction of laminated bolted joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36 (6): 1867- 1875.
13 侯赤, 周银华, 全泓玮, 等. 混合结构中金属疲劳对层合板损伤的影响[J]. 西北工业大学学报, 2018, 36 (1): 74- 82.
doi: 10.3969/j.issn.1000-2758.2018.01.011
13 HOU C , ZHOU Y H , QUAN H W , et al. The effect of metal on composites fatigue damage in mixed structure[J]. Journal of Northwestern Polytechnical University, 2018, 36 (1): 74- 82.
doi: 10.3969/j.issn.1000-2758.2018.01.011
14 安子乾, 舒茂盛, 程羽佳, 等. 3钉带衬套复合材料/金属接头拉伸疲劳性能试验研究[J]. 材料导报, 2021, 35 (20): 20081- 20086.
14 AN Z Q , SHU M S , CHENG Y J , et al. Experimental study on tensile fatigue properties of composite/metal bolted Joints with 3-pin and Sleeves[J]. Materials Reports, 2021, 35 (20): 20081- 20086.
15 HASHIN Z . Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47, 329- 335.
doi: 10.1115/1.3153664
16 谢鸣九. 复合材料连接[M]. 上海: 上海交通大学出版社, 2011: 130- 131.
17 CAMANHO P P , MATTHEWS F L . A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33 (24): 2248- 2280.
doi: 10.1177/002199839903302402
18 GATHERCOLE N , REITER H , ADAM T , et al. Life prediction for fatigue of T800/5435 carbon-fiber composites: 2 constant amplitude loading[J]. International Journal of Fatigue, 1994, 16, 523- 532.
doi: 10.1016/0142-1123(94)90478-2
19 吴学仁. 飞机结构金属材料力学性能手册[M]. 北京: 航空工业出版社, 1997: 337- 343.
20 HASSAN A. A study of fatigue damage models for assessment of steel structures[D]. Gothenberg: Chalmers University of Technology, 2018: 34-35.
21 成大先. 机械设计手册: 连接与紧固[M]. 5版 北京: 机械工业出版社, 2011.
22 SCHON J . Fatigue of bolted composite joints[J]. Composite Joints & Connections, 2011, 245- 256.
23 XU G , CHENG H , ZHANG K , et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design, 2020, 194, 108904.
24 王育虔, 刘展, 杜金强. 高应力水平下T700/MTM4复合材料层合板拉-拉疲劳性能研究[J]. 玻璃钢/复合材料, 2019, (4): 31- 36.
doi: 10.3969/j.issn.1003-0999.2019.04.005
24 WANG Y Q , LIU Z , DU J Q . Study on the tension-tension fatigue properties of T700/MTM46 composite laminates under high stress level[J]. Fiber Reinforced Plastics/Composites, 2019, (4): 31- 36.
doi: 10.3969/j.issn.1003-0999.2019.04.005
[1] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[2] 王刚, 贾普荣, 黄涛, 张龙. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程, 2018, 46(2): 134-141.
[3] 黄文俊, 孙永波, 程小全, 聂宏. 复合材料层板单钉沉头螺栓连接结构拉伸性能[J]. 材料工程, 2013, 0(12): 8-12.
[4] 蔡莲淑, 余业球, 黎沃光, 尹占华. 热型连铸柱晶CuAlNi合金丝记忆状态下的拉伸疲劳[J]. 材料工程, 2006, 0(7): 47-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn